高中数学必修二教学目标与教学重难点_第1页
高中数学必修二教学目标与教学重难点_第2页
高中数学必修二教学目标与教学重难点_第3页
高中数学必修二教学目标与教学重难点_第4页
高中数学必修二教学目标与教学重难点_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章:空间几何体§1.1.1柱、锥、台、球的结构特征一、教学目标

1.学问与技能

通过实物操作,增加学生的直观感知。

能依据几何结构特征对空间物体进行分类。

会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

会表示有关于几何体以与柱、锥、台的分类。

2.过程与方法

让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。让学生视察、探讨、归纳、概括所学的学问。

3.情感看法与价值观

使学生感受空间几何体存在于现实生活四周,增加学生学习的主动性,同时提高学生的视察实力。

培育学生的空间想象实力和抽象括实力。

二、教学重点、难点

重点:让学生感受大量空间实物与模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。§1.2.1

空间几何体的三视图(1课时)一、教学目标1.学问与技能

驾驭画三视图的基本技能

丰富学生的空间想象力

2.过程与方法

通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感看法与价值观

提高学生空间想象力

体会三视图的作用

二、教学重点、难点

重点:画出简洁组合体的三视图

难点:识别三视图所表示的空间几何体

§

空间几何体的直观图(1课时)一、教学目标

1.学问与技能

驾驭斜二测画法画水平设置的平面图形的直观图。

采纳对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2.过程与方法

学生通过视察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感看法与价值观

提高空间想象力与直观感受。

体会对比在学习中的作用。

感受几何作图在生产活动中的应用。

二、教学重点、难点

重点、难点:用斜二测画法画空间几何值的直观图。§柱体、锥体、台体的表面积与体积一、教学目标

1.学问与技能

通过对柱、锥、台体的探讨,驾驭柱、锥、台的表面积和体积的求法。

能运用公式求解,柱体、锥体和台全的全积,并且熟识台体与术体和锥体之间的转换关系。

培育学生空间想象实力和思维实力。

2.过程与方法

让学生经验几何全的侧面展一过程,感知几何体的形态。

让学生通比照比较,理顺柱体、锥体、台体三间的面积和体积的关系。

3.情感看法与价值观通过学习,使学生感受到几何风光 积和体积的求解过程,对自己空间思维实力影响。从而增加学习的主动性。二、教学重点、难点

重点:柱体、锥体、台体的表面积和体积计算

难点:台体体积公式的推导§

球的体积和表面积一、教学目标1.学问与技能

通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为精确和”,有利于同学们进一步学习微积分和近代数学学问。

能运用球的面积和体积公式敏捷解决实际问题。

培育学生的空间思维实力和空间想象实力。

2.过程与方法

通过球的体积和面积公式的推导,从而得到一种推导球体积公式V=3/4πR3和面积公式S=4πR2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。

3.情感看法与价值观

通过学习,使我们对球的体积和面积公式的推导方法有了肯定的了解,提高了空间思维实力和空间想象实力,增加了我们探究问题和解决问题的信念。

二、教学重点、难点

重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。难点:推导体积和面积公式中空间想象实力的形成。其次章

直线与平面的位置关系

平面一、教学目标:

1.学问与技能

利用生活中的实物对平面进行描述;

驾驭平面的表示法与水平放置的直观图;

驾驭平面的基本性质与作用;

培育学生的空间想象实力。

2.过程与方法

通过师生的共同探讨,使学生对平面有了感性相识;

让学生归纳整理本节所学学问。

3.情感看法与价值观运用学生相识到我们所处的世界是一个三维空间,进而增加了学习的爱好。

二、教学重点、难点

重点:1、平面的概念与表示;

2、平面的基本性质,留意他们的条件、结论、作用、图形语言与符号语言。

难点:平面基本性质的驾驭与运用。

空间中直线与直线之间的位置关系一、教学目标

1.学问与技能

(1)了解空间中两条直线的位置关系;

(2)理解异面直线的概念、画法,培育学生的空间想象实力;

(3)理解并驾驭公理4;

(4)理解并驾驭等角定理;

(5)异面直线所成角的定义、范围与应用。

2.过程与方法

(1)师生的共同探讨与讲授法相结合;

(2)让学生在学习过程不断归纳整理所学学问3.情感看法与价值观

让学生感受到驾驭空间两直线关系的必要性,提高学生的学习爱好。

二、教学重点、难点

重点:1、异面直线的概念;

2、公理4与等角定理。

难点:异面直线所成角的计算。§

空间中直线与平面、平面与平面之间的位置关系一、教学目标

1.学问与技能

(1)了解空间中直线与平面的位置关系;

(2)了解空间中平面与平面的位置关系;

(3)培育学生的空间想象实力。

2.过程与方法

(1)学生通过视察与类比加深了对这些位置关系的理解、驾驭;

(2)让学生利用已有的学问与阅历归纳整理本节所学学问。

二、教学重点、难点

重点:空间直线与平面、平面与平面之间的位置关系。

难点:用图形表达直线与平面、平面与平面的位置关系。

直线与平面平行的判定一、教学目标

1.学问与技能

(1)理解并驾驭直线与平面平行的判定定理;

(2)进一步培育学生视察、发觉的实力和空间想象实力;2.过程与方法

学生通过视察图形,借助已有学问,驾驭直线与平面平行的判定定理。3.情感看法与价值观

(1)让学生在发觉中学习,增加学习的主动性;(2)让学生了解空间与平面相互转换的数学思想。

二、教学重点、难点

重点、难点:直线与平面平行的判定定理与应用。

平面与平面平行的判定一、教学目标

1.学问与技能

理解并驾驭两平面平行的判定定理2.过程与方法

让学生通过视察实物与模型,得出两平面平行的判定。

3.情感看法与价值观

进一步培育学生空间问题平面化的思想。

二、教学重点、难点

重点:两个平面平行的判定。难点:判定定理、例题的证明。§

2.2.4直线与平面、平面与平面平行的性质一、教学目标

1.学问与技能

(1)驾驭直线与平面平行的性质定理与其应用;

(2)驾驭两个平面平行的性质定理与其应用。

2.过程与方法

学生通过视察与类比,借助实物模型理解性质与应用。3.情感看法与价值观

(1)进一步提高学生空间想象实力、思维实力;

(2)进一步体会类比的作用;

(3)进一步渗透等价转化的思想。

二、教学重点、难点

重点:两特性质定理

难点:(1)性质定理的证明;

(2)性质定理的正确运用。§2.3.1直线与平面垂直的判定一、教学目标

1.学问与技能

(1)使学生驾驭直线和平面垂直的定义与判定定理;

(2)使学生驾驭判定直线和平面垂直的方法;

(3)培育学生的几何直观实力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。

2.过程与方法

(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;

(2)探究判定直线与平面垂直的方法。3.情感看法与价值观

培育学生学会从“感性相识”到“理性相识”过程中获得新知。

二、教学重点、难点

重点,难点:直线与平面垂直的定义和判定定理的探究。§2.3.2平面与平面垂直的判定一、教学目标

1.学问与技能

(1)使学生正确理解和驾驭“二面角”、“二面角的平面角”与“直二面角”、“两个平面相互垂直”的概念;

(2)使学生驾驭两个平面垂直的判定定理与其简洁的应用;(3)使学生理睬“类比归纳”思想在数学问题解决上的作用。2.过程与方法

(1)通过实例让学生直观感知“二面角”概念的形成过程;

(2)类比已学学问,归纳“二面角”的度量方法与两个平面垂直的判定定理。3.情感看法与价值观

通过揭示概念的形成、发展和应用过程,使学生理睬教学存在于观实生活四周,从中激发学生主动思维,培育学生的视察、分析、解决问题实力。

二、教学重点、难点

重点:平面与平面垂直的判定;

难点:如何度量二面角的大小。

§2.3.3直线与平面垂直的性质

§2.3.4平面与平面垂直的性质一、教学目标

1.学问与技能

(1)使学生驾驭直线与平面垂直,平面与平面垂直的性质定理;

(2)能运用性质定理解决一些简洁问题;

(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。2.过程与方法

(1)让学生在视察物体模型的基础上,进行操作确认,获得对性质定理正确性的相识;

(2)性质定理的推理论证。3.情感看法与价值观

通过“直观感知、操作确认,推理证明”,培育学生空间概念、空间想象实力以与逻辑推理实力。

二、教学重点、难点

重点,难点:两特性质定理的证明。本章小结一、教学目标

1.学问与技能

(1)使学生驾驭学问结构与联系,进一步巩固、深化所学学问;

(2)通过对学问的梳理,提高学生的归纳学问和综合运用学问的实力。2.过程与方法

利用框图对本章学问进行系统的小结,直观、简明再现所学学问,化抽象学习为直观学习,易于识记;同时凸现数学学问的发展和联系。

3.情感看法与价值观

学生通过学问的整合、梳理,理睬空间点、线面间的位置关系与其相互联系,进一步培育学生的空间想象实力和解决问题实力。

二、教学重点、难点

重点:各学问点间的网络关系;

难点:在空间如何实现平行关系、垂直关系、垂直与平行关系之间的转化。第三章

直线与方程§3.1.1直线的倾斜角和斜率一、教学目标

1.学问与技能

(1)

正确理解直线的倾斜角和斜率的概念.

(2)

理解直线的倾斜角的唯一性.

(3)

理解直线的斜率的存在性.

(4)

斜率公式的推导过程,驾驭过两点的直线的斜率公式.

2.情感看法与价值观

(1)

通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培育学生视察、探究实力,运用数学语言表达实力,数学沟通与评价实力.

(2)

通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培育学生树立辩证统一的观点,培育学生形成严谨的科学看法和求简的数学精神.

二、教学重点、难点

重点与难点:

直线的倾斜角、斜率的概念和公式.§两条直线的位置关系一、教学目标

1.学问与技能

理解并驾驭两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.

2.过程与方法

通过探究两直线平行或垂直的条件,培育学生运用已有学问解决新问题的实力,

以与数形结合实力.

3.情感看法与价值观

通过对两直线平行与垂直的位置关系的探讨,培育学生的胜利意识,合作沟通的学习方式,激发学生的学习爱好.

二、教学重点、难点

重点:两条直线平行和垂直的条件是重点,要求学生能娴熟驾驭,并敏捷运用.

难点:启发学生,

把探讨两条直线的平行或垂直问题,

转化为探讨两条直线的斜率的关系问题.

留意:对于两条直线中有一条直线斜率不存在的状况,

在课堂上老师应提示学生留意解决好这个问题.§3.2.1

直线的点斜式方程一、教学目标

1.学问与技能

(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

(2)能正确利用直线的点斜式、斜截式公式求直线方程。

(3)体会直线的斜截式方程与一次函数的关系.

2.过程与方法

在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区分。3.情感看法与价值观

通过让学生体会直线的斜截式方程与一次函数的关系,进一步培育学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

二、教学重点、难点

重点:直线的点斜式方程和斜截式方程。

难点:直线的点斜式方程和斜截式方程的应用。§

直线的两点式方程一、教学目标

1.学问与技能

(1)驾驭直线方程的两点的形式特点与适用范围;

(2)了解直线方程截距式的形式特点与适用范围。2.过程与方法

让学生在应用旧学问的探究过程中获得到新的结论,并通过新旧学问的比较、分析、应用获得新学问的特点。3.情感看法与价值观

(1)相识事物之间的普遍联系与相互转化;

(2)培育学生用联系的观点看问题。

二、教学重点、难点

重点:直线方程两点式。难点:两点式推导过程的理解。§3.2.3

直线的一般式方程一、教学目标

1.学问与技能

(1)明确直线方程一般式的形式特征;

(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。

2.过程与方法

学会用分类探讨的思想方法解决问题。

3.情感看法与价值观

(1)相识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。

二、教学重点、难点

重点:直线方程的一般式。

难点:对直线方程一般式的理解与应用。§3.3.1两直线的交点坐标一、教学目标1.学问与技能

直线和直线的交点

二元一次方程组的解

2.过程与方法

学习两直线交点坐标的求法,以与推断两直线位置的方法。

驾驭数形结合的学习法。

组成学习小组,分别对直线和直线的位置进行推断,归纳过定点的直线系方程。

3.情感看法与价值观

通过两直线交点和二元一次方程组的联系,从而相识事物之间的内的联系。

能够用辩证的观点看问题。

二、教学重点、难点

重点:推断两直线是否相交,求交点坐标。

难点:两直线相交与二元一次方程的关系。

§3.3.2直线与直线之间的位置关系-两点间距离一、教学目标

1.学问与技能

驾驭直角坐标系两点间距离,用坐标法证明简洁的几何问题。2.过程与方法

通过两点间距离公式的推导,能更充分体会数形结合的优越性。

3.情感看法与价值观

体会事物之间的内在联系,,能用代数方法解决几何问题

二、教学重点、难点

重点,两点间距离公式的推导。难点,应用两点间距离公式证明几何问题。§3.3.3两条直线的位置关系——点到直线的距离公式

一、教学目标

1.学问与技能

理解点到直线距离公式的推导,娴熟驾驭点到直线的距离公式;2.过程与方法

会用点到直线距离公式求解两平行线距离王新敞

3.情感看法与价值观

相识事物之间在肯定条件下的转化。用联系的观点看问题王新敞

二、教学重点、难点

重点:点到直线的距离公式王新敞

难点:点到直线距离公式的理解与应用.

第四章

圆与方程§

圆的标准方程一、教学目标

1.学问与技能

驾驭圆的标准方程,能依据圆心、半径写出圆的标准方程。

会用待定系数法求圆的标准方程。

2.过程与方法

进一步培育学生能用解析法探讨几何问题的实力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,留意培育学生视察问题、发觉问题和解决问题的实力。

3.情感看法与价值观

通过运用圆的学问解决实际问题的学习,从而激发学生学习数学的热忱和爱好。

二、教学重点、难点

重点:圆的标准方程

难点:会依据不同的已知条件,利用待定系数法求圆的标准方程。§4.1.2圆的一般方程一、教学目标

1.学问与技能

(1)在驾驭圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径.驾驭方程表示圆的条件.

(2)能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定系数法求圆的方程。

(3)培育学生探究发觉与分析解决问题的实际实力。

2.过程与方法

通过对方程表示圆的条件的探究,培育学生探究发觉与分析解决问题的实际实力。

3.情感看法与价值观

渗透数形结合、化归与转化等数学思想方法,提高学生的整体素养,激励学生创新,勇于探究。

二、教学重点、难点

重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,依据已知条件确定方程中的系数,D、E、F.

难点:对圆的一般方程的相识、驾驭和运用王新敞§

直线与圆的位置关系一、教学目标

1.学问与技能

(1)理解直线与圆的位置的种类;

(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;(3)会用点到直线的距离来推断直线与圆的位置关系.2.过程与方法

设直线,圆C:,圆的半径为r,圆心,到直线的距离为d,则判别直线与圆的位置关系的依据有以下几点:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论