2024年安徽省合肥市北城片区八年级数学第二学期期末质量检测模拟试题含解析_第1页
2024年安徽省合肥市北城片区八年级数学第二学期期末质量检测模拟试题含解析_第2页
2024年安徽省合肥市北城片区八年级数学第二学期期末质量检测模拟试题含解析_第3页
2024年安徽省合肥市北城片区八年级数学第二学期期末质量检测模拟试题含解析_第4页
2024年安徽省合肥市北城片区八年级数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年安徽省合肥市北城片区八年级数学第二学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在下列各式中,(1),(2)x2y-3xy2,(3),(4),是分式的有()A.(1).(2) B.(1).(3) C.(1).(4) D.(3).(4)2.下列四个图形中,是轴对称图形,但不是中心对称图形的是().A.B.C.D.3.用反证法证明“在中,,则是锐角”,应先假设()A.在中,一定是直角 B.在中,是直角或钝角C.在中,是钝角 D.在中,可能是锐角4.如图,在中,,垂足为,,,则的长为()A. B. C. D.5.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m6.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)2016128人数241853A.20,16 B.l6,20 C.20,l2 D.16,l27.若分式的值为0,则x的值是()A.2 B.0 C.﹣2 D.任意实数8.一次函数,当时,x的取值范围是A. B. C. D.9.在中招体育考试中,某校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:=8.2,=21.7,=15,=17.2,则四个班体育考试成绩最不稳定的是()A.甲班 B.乙班 C.丙班 D.丁班10.在中,、分别是、边的中点,若,则的长是()A.9 B.5 C.6 D.4二、填空题(每小题3分,共24分)11.如图,在直角坐标系中,正方形、的顶点均在直线上,顶点在轴上,若点的坐标为,点的坐标为,那么点的坐标为____,点的坐标为__________.12.已知菱形ABCD的对角线AC=10,BD=24,则菱形ABCD的面积为__________。13.正方形的一边和一条对角线所成的角是________度.14.在平面直角坐标系xoy中,我们把横纵坐标都是整数的点叫做整点,过点(1,2)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在△AOB内部(不包括边界)的整点的坐标是________.15.如图,四边形ABCD是正方形,△EBC是等边三角形,则∠AED的度数为_________.16.若式子有意义,则x的取值范围是_____.17.一次函数,若y随x的增大而增大,则的取值范围是.18.若分式的值为零,则x=________.三、解答题(共66分)19.(10分)如图1,在平行四边形中,(),垂足为,所在直线,垂足为.(1)求证:(2)如图2,作的平分线交边于点,与交于点,且,求证:20.(6分)如图,,平分,且交于点,平分,且交于点,与相交于点,连接(1)求证:四边形是菱形.(2)若,,求的长.21.(6分)如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.22.(8分)如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AF平分∠BAD,连接DE,试判断DE与AF的位置关系,并说明理由.23.(8分)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?24.(8分)先化简,再求值:(x+2+)÷,其中x=25.(10分)如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足﹣(a﹣4)2≥0,c=+8.(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值.26.(10分)如图,四边形ABCD中,BA=BC,DA=DC,我们把这种两组邻边分别相等的四边形叫做“筝形”,其对角线AC、BD交于点M,请你猜想关于筝形的对角线的一条性质,并加以证明.猜想:证明:

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据分式的定义看代数式中分母中含有字母的代数式为分式.【详解】x2y-3xy2和分母中不含有字母,为整式;和分母中含有字母为分式,故选B.【点睛】本题考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、A【解析】试题分析:利用知识点:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,知:选项A是轴对称图形,但不是中心对称图形;选项B和C,既是轴对称图形又是中心对称图形;选项D是中心对称图形,但不是轴对称图形.考点:轴对称图形和中心对称图形的定义3、B【解析】

假设命题的结论不成立或假设命题的结论的反面成立,然后推出矛盾,说明假设错误,结论成立.【详解】解:用反证法证明命题“在中,,则是锐角”时,应先假设在中,是直角或钝角.故选:B.【点睛】本题考查反证法,记住反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.4、A【解析】

根据题意,可以证得△ACD∽△CBD,进而得到,由已知数据代入即可.【详解】由题意知,,∴∠ADC=∠BDC=90°,∠A=∠BCD,∴△ACD∽△CBD,∴,即,∵,,∴CD=4,故选:A.【点睛】本题考查了直角三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.5、B【解析】∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.6、A【解析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是1,1,那么这组数据的中位数1.故选:A.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.7、A【解析】

根据分式值为0的条件进行求解即可.【详解】由题意x-2=0,解得:x=2,故选A.【点睛】本题考查了分式值为0的条件,熟知“分式值为0的条件是分子为0且分母不为0”是解题的关键.8、D【解析】

根据一次函数,可得:,解得:,即可求解.【详解】因为,所以当时,则,解得,故选D.【点睛】本题主要考查一次函数与不等式的关系,解决本题的关键是要熟练掌握一次函数与不等式的关系.9、B【解析】

方差越小数据越稳定,根据方差的大小即可得到答案.【详解】∵8.2<15<17.2<21.7,∴乙班的体育考试成绩最不稳定,故选:B.【点睛】此题考查方差的运用,方差考查数据稳定性,方差越小数据越稳定,方差越大数据越不稳定.10、C【解析】

根据三角形的中位线定理得出AB=2DE,把DE的值代入即可.【详解】解:∵D、E分别是BC、AC边的中点,∴DE是△CAB的中位线,∴AB=2DE=6.故选C.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记并灵活应用定理是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

先求出点、的坐标,代入求出解析式,根据=1,(3,2)依次求出点点、、、的纵坐标及横坐标,得到规律即可得到答案.【详解】∵(1,1),(3,2),∴正方形的边长是1,正方形的边长是2,∴(0,1),(1,2),将点、的坐标代入得,解得,∴直线解析式是y=x+1,∵=1,(3,2),∴的纵坐标是,横坐标是,∴的纵坐标是,横坐标是,∴的纵坐标是,横坐标是,∴的纵坐标是,横坐标是,由此得到的纵坐标是,横坐标是,故答案为:(7,8),(,).【点睛】此题考查一次函数的定义,函数图象,直角坐标系中点的坐标规律,能根据图象求出点的坐标并总结规律用于解题是关键.12、120【解析】

根据菱形的面积等于对角线积的一半,即可求得答案.【详解】解:菱形ABCD的面积【点睛】此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.13、45【解析】

正方形的对角线和其中的两边长构成等腰直角三角形,故正方形的一条对角线和一边所成的角为45度.【详解】解:∵正方形的对角线和正方形的其中两条边构成等腰直角三角形

∴正方形的一条对角线和一边所成的角是45°.故答案为:45°.【点睛】本题主要考查正方形对角线相等平分垂直的性质.14、(1,1)和(2,1).【解析】

设直线AB的解析式为,由直线AB上一点的坐标利用待定系数法即可求出b值,画出图形,即可得出结论.【详解】解:设直线AB的解析式为,∵点(1,2)在直线AB上,∴,解得:b=,∴直线AB的解析式为.∴点A(5,0),点B(0,).画出图形,如图所示:∴在△AOB内部(不包括边界)的整点的坐标是:(1,1)和(2,1).【点睛】本题考查了两条直线平行问题以及待定系数法求函数解析式,解题的关键是画出图形,利用数形结合解决问题.本题属于基础题,难度不大,解决该题目时,由点的坐标利用待定系数法求出函数解析式是关键.15、150【解析】

根据题意先得出AB=BC=BE,EC=BC=DC,并以此求出∠AEB和∠DEC,进而利用∠AED=360°-∠AEB-∠DEC-∠BEC即可求出∠AED的度数.【详解】解:∵四边形ABCD是正方形,△EBC是等边三角形,∴AB=BC=BE,EC=BC=DC,∠ABE=∠DCE=90°-60°=30°,∴∠AEB=∠EAB=(180°-30°)÷2=75°,∴∠DEC=∠EDC=(180°-30°)÷2=75°,∴∠AED=360°-∠AEB-∠DEC-∠BEC=360°-75°-75°-60°=150°.故答案为:150°.【点睛】本题考查正方形的性质以及等腰、等边三角形的性质,熟练掌握相关的性质是解题的关键.16、x≥﹣2且x≠1.【解析】由知,∴,又∵在分母上,∴.故答案为且.17、.【解析】一次函数的图象有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数的值随x的值增大而减小.由题意得,函数的y随x的增大而增大,.18、2【解析】

分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】依题意得x2-x-2=1,解得x=2或-1,∵x+1≠1,即x≠-1,∴x=2.【点睛】此题考查的是对分式的值为1的条件的理解和因式分解的方法的运用,该类型的题易忽略分母不为1这个条件.三、解答题(共66分)19、(1)详见解析;(2)详见解析【解析】

(1)利用HL证明,可得出;(2)延长到,使得,先证出,再证明,从而得到,所以证出.【详解】(1)证明:∵平行四边形∴又∵∴(平行线之间垂直距离处处相等)∴()∴(2)延长到,使得∵,且∴∴∵∴∵∴∵平分∴在中,又∴∴而∴【点睛】本题考查了平行四边形的性质和全等三角形的判定和性质,添加恰当的辅助线构建全等三角形是解题的关键.20、(1)见解析;(2)AD=.【解析】

(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出结论;(2)根据菱形的性质可得∠AOD=90°,OD=3,然后在Rt△AOD中利用勾股定理列方程求出AO即可解决问题.【详解】(1)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴平行四边形四边形ABCD是菱形;(2)∵四边形ABCD是菱形,BD=6,∴∠AOD=90°,OD=3,∵,∴AD=2AO,在Rt△AOD中,AD2=AO2+OD2,即4AO2=AO2+9,∴AO=,∴AD=2AO=.【点睛】本题主要考查了平行线的性质、角平分线定义、等腰三角形的判定、平行四边形的判定、菱形的判定和性质、含30度直角三角形的性质以及勾股定理,熟练掌握菱形的判定定理和性质定理是解题的关键.21、(1);(2)点E的坐标是(2,1)时,△BEC的面积最大,最大面积是1;(1)P的坐标是(﹣1,)、(5,)、(﹣1,).【解析】

解:(1)∵直线y=﹣x+1与x轴交于点C,与y轴交于点B,∴点B的坐标是(0,1),点C的坐标是(4,0),∵抛物线y=ax2+x+c经过B、C两点,∴,解得,∴y=﹣x2+x+1.(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,,∵点E是直线BC上方抛物线上的一动点,∴设点E的坐标是(x,﹣x2+x+1),则点M的坐标是(x,﹣x+1),∴EM=﹣x2+x+1﹣(﹣x+1)=﹣x2+x,∴S△BEC=S△BEM+S△MEC==×(﹣x2+x)×4=﹣x2+1x=﹣(x﹣2)2+1,∴当x=2时,即点E的坐标是(2,1)时,△BEC的面积最大,最大面积是1.(1)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.①如图2,,由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+1上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM=,∴AM所在的直线的斜率是:;∵y=﹣x2+x+1的对称轴是x=1,∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+1),则,解得或,∵x<0,∴点P的坐标是(﹣1,﹣).②如图1,,由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+1上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM=,∴AM所在的直线的斜率是:;∵y=﹣x2+x+1的对称轴是x=1,∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+1),则,解得或,∵x>0,∴点P的坐标是(5,﹣).③如图4,,由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+1上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM=,∵y=﹣x2+x+1的对称轴是x=1,∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+1),则解得,∴点P的坐标是(﹣1,).综上,可得在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣1,﹣)、(5,﹣)、(﹣1,).【点睛】本题考查二次函数综合题.22、(1)见解析(2)DE⊥AF【解析】试题分析:(1)根据平行四边形的性质可得到AB∥CD,从而可得到AB∥DF,根据平行线的性质可得到两组角相等,已知点E是BC的中点,从而可根据AAS来判定△BAE≌△CFE,根据全等三角形的对应边相等可证得AB=CF,进而得出CF=CD;(2)利用全等三角形的判定与性质得出AE=EF,再利用角平分线的性质以及等角对等边求出DA=DF,利用等腰三角形的性质求出即可.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵点F为DC的延长线上的一点,∴AB∥DF,∴∠BAE=∠CFE,∠ECF=∠EBA,∵E为BC中点,∴BE=CE,则在△BAE和△CFE中,,∴△BAE≌△CFE(AAS),∴AB=CF,∴CF=CD;(2)解:DE⊥AF,理由:∵AF平分∠BAD,∴∠BAF=∠DAF,∵∠BAF=∠F,∴∠DAF=∠F,∴DA=DF,又由(1)知△BAE≌△CFE,∴AE=EF,∴DE⊥AF.【点评】此题主要考查学生对平行四边形的性质以及全等三角形的判定与性质,证明线段相等的常用方法是证明三角形全等.23、(1)证明见解析;(2)CQ=【解析】分析:(1)利用△A1CB1≌△ACB得到CA1=CA,再根据旋转的性质得∠B1CB=∠A1CA=45°,则∠BCA1=45°,于是根据“ASA”判断△CQA1≌△CP1A,所以CP1=CQ;(2)过点P1作P1P⊥AC于点P,如图②,先在Rt△AP1P中根据含30度的直角三角形三边的关系得到P1P=AP1=×2=1,然后在Rt△CP1P中利用等腰直角三角形的性质得CP=P1P=1,CP1=PP1=,由(1)得CQ=CP1=.详解:(1)∵△A1CB1≌△ACB,∴CA1=CA.∵图①中的△A1B1C顺时针旋转45°得图②,∴∠B1CB=∠A1CA=45°,∴∠BCA1=45°.在△CQA1和△CP1A中,∵,∴△CQA1≌△CP1A,∴CP1=CQ;(2)过点P1作P1P⊥AC于点P,如图②.在Rt△AP1P中,∵∠A=30°,∴P1P=AP1=×2=1.在Rt△CP1P中,∵∠P1CP=45°,∴CP=P1P=1,∴CP1=PP1=,∴CQ=CP1=.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.旋转有三要素:旋转中心;旋转方向;旋转角度.也考查了等腰直角三角形的性质.24、,1-【解析】

首先计算括号里面的加减,然后再计算除法,化简后再代入x的值即可.【详解】解:原式=×,=•=.当x=-3时,原式===1-.【点睛】此题主要考查了分式的化简求值,关键是掌握分式加减和除法的计算法则.25、(1)y=2x+8,D(2,2);(2)存在,5;(3).【解析】

试题分析:(1)利用非负数的性质求出a,b,c的值,进而确定出直线y=bx+c,得到正方形的边长,即可确定出D坐标;(2)存在,理由为:对于直线y=2x+8,令y=0求出x的值,确定出E坐标,根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线方程为y=2x+t,将D坐标代入求出b的值,确定出平移后直线解析式,进而确定出此直线与x轴的交点,从而求出平移距离,得到t的值;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,利用同角的余角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论