版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省岐山县2024年数学八年级下册期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知:四边形ABCD的对角线AC、BD相交于点O,则下列条件不能判定四边形ABCD是平行四边形的是A., B.,C., D.,2.下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.1、2、3B.C.D.3.不能被()整除.A.80 B.81 C.82 D.834.下列四边形中,对角线相等且互相垂直平分的是(
)A.平行四边形 B.正方形 C.等腰梯形 D.矩形5.在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.86.直角三角形有两边的长分别是3、4,则剩下一边的长是()A.5 B. C.2 D.或57.到三角形三条边的距离相等的点是三角形()的交点.A.三条中线 B.三条角平分线 C.三条高 D.三条边的垂直平分线8.李华根据演讲比赛中九位评委所给的分数制作了表格:如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()平均数中位数众数方差8.5分8.3分8.1分0.15A.平均数 B.众数 C.方差 D.中位数9.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表所示,你认为商家更应该关注鞋子尺码的()尺码/cm
22
22.5
23
23.5
24
24.5
25
销售量/双
4
6
6
10
2
1
1
A.平均数 B.中位数 C.众数 D.方差10.某市政工程队准备修建一条长1200米的污水处理管道.在修建完400米后,为了能赶在讯期前完成,采用新技术,工作效率比原来提升了25%.结果比原计划提前4天完成任务.设原计划每天修建管道x米,依题意列方程得()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为___.12.如图矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E,F,AB=3,BC=4,则图中阴影部分的面积为_____.13.一个正多边形的每个内角度数均为135°,则它的边数为____.14.某班的中考英语口语考试成绩如表:考试成绩/分3029282726学生数/人3151363则该班中考英语口语考试成绩的众数比中位数多_____分.15.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.16.方程x3=8的根是______.17.如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差S甲2、S乙2的大小:S甲2____S乙2(填“>”、“<”或“=”)18.化简:=.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,,E为BD中点,延长CD到点F,使.求证:求证:四边形ABDF为平行四边形
若,,,求四边形ABDF的面积20.(6分)如图,在正方形网格中,每一个小正方形的边长为1.△ABC的三个顶点都在格点上,A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC向右平移6个单位的△A1B1C1,并写出C1的坐标;(3)请画出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.21.(6分)(1)因式分解:9(m+n)2﹣(m﹣n)2(2)已知:x+y=1,求x2+xy+y2的值.22.(8分)如图,在▱ABCD中,E,F是对角线AC上的两点,且AF=CE.求证:DE∥BF.23.(8分)如图1,在平面直角坐标系中,直线y=﹣x+b与x轴、y轴相交于A、B两点,动点C(m,0)在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求m和b的数量关系;(2)当m=1时,如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点B′的坐标及△BCD平移的距离;(3)在(2)的条件下,直线AB上是否存在一点P,以P、C、D为顶点的三角形是等腰直角三角形?若存在,写出满足条件的P点坐标;若不存在,请说明理由.24.(8分)在正方形AMFN中,以AM为BC边上的高作等边三角形ABC,将AB绕点A逆时针旋转90°至点D,D点恰好落在NF上,连接BD,AC与BD交于点E,连接CD,(1)如图1,求证:△AMC≌△AND;(2)如图1,若DF=,求AE的长;(3)如图2,将△CDF绕点D顺时针旋转(),点C,F的对应点分别为、,连接、,点G是的中点,连接AG,试探索是否为定值,若是定值,则求出该值;若不是,请说明理由.25.(10分)近年来,越来越多的人们加入到全民健身的热潮中来.“健步走”作为一项行走速度和运动量介于散步和竞走之间的步行运动,因其不易发生运动伤害,不受年龄、时间和场地限制的优点而受到人们的喜爱.随着信息技术的发展,很多手机可以记录人们每天健步走的步数,为大家的健身做好记录.小明的爸爸妈妈都是健步走爱好者,一般情况下,他们每天都会坚持健步走.小明为了给爸爸妈妈颁发4月份的“运动达人”奖章,进行了抽样调查,过程如下,请补充完整.从4月份随机抽取10天,记录爸爸妈妈运动步数(千步)如下:爸爸12101115141314111412妈妈1114152111114151414根据以上信息,整理分析数据如下表所示:平均数中位数众数爸爸12.612.5妈妈1414(1)直接在下面空白处写出表格中,的值;(2)你认为小明会把4月份的“运动达人”奖章颁发给谁,并说明理由.26.(10分)解方程:(1)解分式方程:(2)解一元二次方程x2+8x﹣9=1.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形,(2)两组对边分别相等的四边形是平行四边形,(3)一组对边平行且相等的四边形是平行四边形,(4)两组对角分别相等的四边形是平行四边形,(5)对角线互相平分的四边形是平行四边形,根据平行四边形的判定即可解答.【详解】A选项,,,根据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,B选项,不能判定四边形是平行四边形,C选项,,根据对角线互相平分的四边形是平行四边形,能判定四边形ABCD是平行四边形,D选项,,根据两组对角分别相等的四边形是平行四边形能判定四边形ABCD是平行四边形,故选B.【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.2、C【解析】试题解析:A、∵12+22=5≠32,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;B、∵(32)2+(42)2≠(52)2
,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;C、∵()2+()2=3=()2,∴以这三个数为长度的线段,能构成直角三角形,故选项正确;D、∵()2+()2=7≠()2,∴以这三个数为长度的线段不能构成直角三角形,故选项错误.故选C.【点睛】本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.3、D【解析】
先提出公因式81,然后利用平方差公式进行因式分解即可得出答案.【详解】解:813-81=81×(812-1)=81×(81-1)×(81+1)=81×80×82,所以813-81不能被83整除.故选D.【点睛】本题考查了因式分解的应用,将原式正确的进行因式分解是解决此题的关键.4、B【解析】
解:对角线相等且互相垂直平分的四边形是正方形,故选B.【点睛】本题考查等腰梯形的性质;平行四边形的性质;矩形的性质;正方形的性质.5、A【解析】分析:直接根据勾股定理求解即可.详解:∵在直角三角形中,勾为3,股为4,∴弦为故选A.点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.6、D【解析】
分两种情况讨论,3,4都是直角边长,或者4为斜边长,利用勾股定理解出剩下一边的长即可.【详解】①若3,4都是直角边长,则斜边=,②若4为斜边长,则剩下一条直角边=,综上,剩下一边的长是或1.故选D.【点睛】本题考查勾股定理,当无法确定直角边与斜边时,分类讨论是解题的关键.7、B【解析】
到三角形三条边距离相等的点是三角形的内心.【详解】解:到三角形三条边距离相等的点是三角形的内心,即三个内角平分线的交点.
故选:B.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8、D【解析】
由一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数;接下来根据中位数的定义,结合去掉一个最高分和一个最低分,不难得出答案.【详解】解:中位数是将一组数从小到大的顺序排列,取中间位置或中间两个数的平均数得到,所以如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选D.【点睛】本题主要考查平均数、众数、方差、中位数的定义,其中一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数.9、C【解析】
此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.【详解】解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店最喜欢的是众数.故选C.考点:统计量的选择.10、B【解析】
设原计划每天修建管道x米,则原计划修建天数为天.实际前面400米,每天修建管道x米,需要天,剩下的1200-400=800米,每天修建管道x(1+25%)米,需要天.根据实际天数比原计划提前4天完成任务即可得出数量关系.【详解】设原计划每天修建管道x米,根据题意的–=4,--=4,-=4,选项B正确.【点睛】本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;难点是得到实际修建的天数.二、填空题(每小题3分,共24分)11、(﹣,2)【解析】
根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【详解】∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE==,∴点C的坐标为(﹣,2).故答案为:(﹣,2).【点睛】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.12、1.【解析】
首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△BCD的面积.【详解】∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,∵,∴△AOE≌△COF(ASA),∴S△AOE=S△COF,∴S阴影=S△AOE+S△BOF+S△COD=S△AOE+S△BOF+S△COD=S△BCD;∵S△BCD=BC•CD=1,∴S阴影=1.故答案为1.【点睛】本题主要考查矩形的性质,三角形全等的判定和性质定理,掌握三角形的判定和性质定理,是解题的关键.13、8【解析】
试题分析:多边形的每一个内角的度数=,根据公式就可以求出边数.【详解】设该正多边形的边数为n由题意得:=135°解得:n=8故答案为8.【点睛】考点:多边形的内角和14、3【解析】这组数出现次数最多的是3;∴这组数的众数是3.∵共42人,∴中位数应是第23和第22人的平均数,位于最中间的数是2,2,∴这组数的中位数是2.∴该班中考英语口语考试成绩的众数比中位数多3﹣2=3分,故答案为3.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.15、1【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,∴m1﹣1m=0且m≠0,解得,m=1,故答案是:1.【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16、2【解析】
直接进行开立方的运算即可.【详解】解:∵x3=8,∴x=38故答案为:2.【点睛】本题考查了求一个数的立方根.17、<【解析】
利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.【详解】解:由折线统计图得乙运动员的成绩波动较大,所以S甲2<S乙2故选<【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.18、.【解析】试题分析:原式=.考点:二次根式的乘除法.三、解答题(共66分)19、(1)详见解析;(2)详见解析;(3).【解析】
(1)先根据两直线平行内错角相等得出,再根据E为BD中点,和对顶角相等,根据AAS证出≌,从而证出;(2)根据对角线互相平分的四边形是平行四边形,得出四边形ABCD是平行四边形,证出,,在结合已知条件,根据一组对边平行且相等的四边形是平行四边形,从而证出结论;(3)根据平行四边形的对角相等得出,再根据得出,根据勾股定理得出,从而得出四边形ABDF的面积;【详解】证明,,,,≌,;由可知,,四边形ABCD是平行四边形,,,,,,四边形ABDF为平行四边形;四边形ABDF为平行四边形,,AF=BD=2,,,,,
,
根据勾股定理可得:
,四边形ABDF的面积.【点睛】本题考查了平行四边形的性质和判定,全等三角形的性质和判定以及勾股定理等知识点,熟练掌握相关的知识是解题的关键.20、(1)见解析;(2)见解析;(5,4);(3)见解析;(1,-4).【解析】
(1)根据A、C两点的坐标建立平面直角坐标系即可;
(2)根据图形平移的性质画出△A1B1C1′,然后写出点C1坐标;
(3)分别作出点A、B、C关于原点O的对称点A2、B2、C2,连接A2、B2、C2即可得到△ABC关于原点O对称的△A2B2C2,然后写出点C2坐标.【详解】解:(1)如图,建立平面直角坐标系;(2)如图,△A1B1C1为所作;点C1的坐标为(5,4);(3)如图,△A2B2C2为所作;点C2的坐标为(1,-4).故答案为:(1)见解析;(2)见解析;(5,4);(3)见解析;(1,-4).【点睛】本题考查旋转变换及平移变换,熟知图形经过旋转及平移后与原图形全等是解题的关键.21、(1)4(2m+n)(m+2n);(2).【解析】
(1)直接利用平方差公式分解因式得出答案;
(2)直接提取公因式,再利用完全平方公式分解因式,进而把已知代入求出答案.【详解】解:(1)9(m+n)2﹣(m﹣n)2=[3(m+n)+(m﹣n)][3(m+n)﹣(m﹣n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n);(2)x2+xy+y2=(x2+2xy+y2)=(x+y)2,当x+y=1时,原式=×12=.【点睛】此题主要考查了公式法分解因式,正确运用公式是解题关键.22、证明见解析【解析】
直接连接BD,交AC于点O,利用平行四边形的性质得出OA=OC,OB=OD,进而得出四边形EBFD是平行四边形求出答案即可.【详解】证明:连接BD,交AC于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AF=CE,∴OF=OE.∴四边形EBFD是平行四边形.∴DE∥BF.【点睛】此题主要考查了平行四边形的判定与性质,正确得出四边形EBFD是平行四边形是解题关键.23、(1)b=3m;(2)个单位长度;(3)P(0,3)或(2,2)【解析】
(1)易证△BOC≌△CED,可得BO=CE=b,DE=OC=m,可得点D坐标,代入解析式可求m和b的数量关系;
(2)首先求出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;
(3)分两种情况讨论,由等腰直角三角形的性质可求点P坐标.【详解】解:(1)直线y=﹣x+b中,x=0时,y=b,所以,B(0,b),又C(m,0),所以,OB=b,OC=m,在和中∴点(2)∵m=1,∴b=3,点C(1,0),点D(4,1)∴直线AB解析式为:设直线BC解析式为:y=ax+3,且过(1,0)∴0=a+3∴a=-3∴直线BC的解析式为y=-3x+3,设直线B′C′的解析式为y=-3x+c,把D(4,1)代入得到c=13,∴直线B′C′的解析式为y=-3x+13,当y=3时,当y=0时,∴△BCD平移的距离是个单位.
(3)当∠PCD=90°,PC=CD时,点P与点B重合,
∴点P(0,3)
如图,当∠CPD=90°,PC=PD时,
∵BC=CD,∠BCD=90°,∠CPD=90°
∴BP=PD
∴点P是BD的中点,且点B(0,3),点D(4,1)
∴点P(2,2)
综上所述,点P为(0,3)或(2,2)时,以P、C、D为顶点的三角形是等腰直角三角形.【点睛】本题考查一次函数综合题、等腰直角三角形的性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移性质解决问题,属于中考压轴题.24、(1)见解析;(2)AE=;(3)(3),理由见解析.【解析】
(1)运用四边形AMFN是正方形得到判断△AMC,△AND是Rt△,进一步说明△ABC是等边三角形,在结合旋转的性质,即可证明.(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=,则AE=GE=,得到△GBE是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt△AMC≌Rt△AND,最后通过计算求得AE的长;(3)延长F1G到M,延长BA交的延长线于N,使得,可得≌,从而得到,可知∥,再根据题意证明≌,进一步说明是等腰直角三角形,然后再使用勾股定理求解即可.【详解】(1)证明:∵四边形AMFN是正方形,∴AM=AN∠AMC=∠N=90°∴△AMC,△AND是Rt△∵△ABC是等边三角形∴AB=AC∵旋转后AB=AD∴AC=AD∴Rt△AMC≌Rt△AND(HL)(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=则AE=GE=易得△GBE是等腰直角三角形∴BG=EG=∴AB=BC=易得∠DHF=30°∴HD=2DF=,HF=∴BF=BH+HF=∵Rt△AMC≌Rt△AND(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022-2023学年广东省深圳市龙华区六年级上学期期末英语试卷
- 腹膜透析家庭培训
- 1.3地球的圈层结构课件高中地理湘教版(2019)必修一
- 给员工培训沟通技巧
- 支气管镜镜后护理
- 新活动策划方案
- 岗前培训小组展示汇报
- 1.2选择题(二)原卷版
- 急性心肌梗死应急演练方案
- 艾滋病的护理诊断与护理措施
- 《物联网单片机应用与开发》课程标准(含课程思政)
- 电源适配器方案
- 人民银行征信报告样板
- 全国民用建筑工程设计技术措施节能专篇-暖通空调动力
- 中国急诊重症肺炎临床实践专家共识课件
- 辽宁省2023年高中学业水平合格性考试语文试卷真题(答案详解)
- 投资管理的项目投资和项目管理
- 2024年度医院心血管内科护士长述职报告课件
- 危重症患儿病情观察与护理
- 2024年度医院介入放射科述职报告课件
- 《京东决战供应链》课件
评论
0/150
提交评论