江苏省苏州昆山、太仓市2024届八年级下册数学期末学业质量监测模拟试题含解析_第1页
江苏省苏州昆山、太仓市2024届八年级下册数学期末学业质量监测模拟试题含解析_第2页
江苏省苏州昆山、太仓市2024届八年级下册数学期末学业质量监测模拟试题含解析_第3页
江苏省苏州昆山、太仓市2024届八年级下册数学期末学业质量监测模拟试题含解析_第4页
江苏省苏州昆山、太仓市2024届八年级下册数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州昆山、太仓市2024届八年级下册数学期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.一组数据3,5,4,7,10的中位数是()A.4 B.5 C.6 D.72.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个3.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是()A.1 B.2 C.5 D.64.某楼盘2016年房价为每平方米15600元,经过两年连续降价后,2018年房价为每平方米12400元。设该楼盘这两年房价每年平均降低率为x,根据题意可列方程为()A.15600(1-2x)=12400 B.2×15600(1-2x)=12400C.15600(1-x)2=12400 D.15600(1-x2)=124005.下列多项式中能用完全平方公式分解的是A. B. C. D.6.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE,请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF,这四位同学写出的结论中不正确的是()A.小青 B.小何 C.小夏 D.小雨7.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3 B.﹣5 C.7 D.﹣3或﹣58.若,则的值用、可以表示为()A. B. C. D.9.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5 B.10 C.12 D.1310.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40° B.36° C.30° D.25°11.下列四个多项式中,能因式分解的是()A.a2+1 B.a2-6a+9 C.x2+5y D.x2-5y12.已知点A(﹣1,y1),点B(2,y2)在函数y=﹣3x+2的图象上,那么y1与y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定二、填空题(每题4分,共24分)13.四边形的外角和等于.14.如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____15.要使分式有意义,应满足的条件是__________16.如图,直线与轴正半轴交于点,与轴交于点,将沿翻折,使点落在点处,点是线段的中点,射线交线段于点,若为直角三角形,则的值为__________.17.如图,在△ABC中,∠B=70°,∠BAC=30°,将△ABC绕点C顺时针旋转得到△EDC,当点B的对应点D恰好落在AC边上时,∠CAE的度数为___________.18.在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,抛物线与轴交于点,与轴交于两点,其对称轴与轴交于点.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标;若不存在,请说明理由;(3)连接,在直线的下方的抛物线上,是否存在一点,使的面积最大?若存在,请求出点的坐标;若不存在,请说明理由.20.(8分)如图,在等边△ABC中,点F、E分别在BC、AC边上,AE=CF,AF与BE相交于点P.(1)求证:AEP∽BEA;(2)若BE=3AE,AP=2,求等边ABC的边长.21.(8分)某景区的水上乐园有一批人座的自划船,每艘可供至位游客乘坐游湖,因景区加大宣传,预计今年游客将会增加.水上乐园的工作人员在去年月日一天出租的艘次人自划船中随机抽取了艘,对其中抽取的每艘船的乘坐人数进行统计,并制成如下统计图.(1)求扇形统计图中,“乘坐1人”所对应的圆心角度数;(2)估计去年月日这天出租的艘次人自划船平均每艘船的乘坐人数;(3)据旅游局预报今年月日这天该景区可能将增加游客300人,请你为景区预计这天需安排多少艘4人座的自划船才能满足需求.22.(10分)将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.(1)求点G的坐标;(2)求直线EF的解析式;(3)设点P为直线EF上一点,是否存在这样的点P,使以P,F,G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.23.(10分)如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接.(1)求出直线的解析式;(2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形为平行四边形时,求的值.(3)为直线上一点,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由.24.(10分)阅读理解:定义:有三个内角相等的四边形叫“和谐四边形”.(1)在“和谐四边形”中,若,则;(2)如图,折叠平行四边形纸片,使顶点,分别落在边,上的点,处,折痕分别为,.求证:四边形是“和谐四边形”.25.(12分)已知:a、b、c满足求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.26.在学校组织的知识竞赛活动中,老师将八年级一班和二班全部学生的成绩整理并绘制成如下统计表:得分(分)人数(人)班级5060708090100一班251013146二班441621212(1)现已知一班和二班的平均分相同,请求出其平均分.(2)请分别求出这两班的中位数和众数,并进一步分析这两个班级在这次竞赛中成绩的情况.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据中位数的概念求解.【详解】这组数据按照从小到大的顺序排列为:3,4,1,7,10,则中位数为:1.故选:B.【点睛】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、C【解析】

要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.3、C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.4、C【解析】分析:首先根据题意可得2017年的房价=2016年的房价×(1+增长率),2018年的房价=2017年的房价×(1+增长率),由此可得方程.详解:解:设这两年平均房价年平均增长率为x,根据题意得:15600(1-x)2=12400,故选C.点睛:本题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.5、B【解析】

根据完全平方公式的结构特征判断即可.【详解】选项A、C、D都不能够用完全平方公式分解,选项B能用完全平方公式分解,即.故选B.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6、B【解析】

根据平行四边形的性质可得OA=OC,CD∥AB,从而得∠ACE=∠CAF,可判断出小雨的结论正确,证明△EOC≌△FOA,可得OE=OF,判断出小青的结论正确,由△EOC≌△FOA继而可得出S四边形AFED=S四边形FBCE,判断出小夏的结论正确,由△EOC≌△FOA可得EC=AF,继而可得出四边形DFBE是平行四边形,从而可判断出四边形DFBE是菱形,无法判断是正方形,判断出故小何的结论错误即可.【详解】∵四边形ABCD是平行四边形,∴OA=OC,CD∥AB,∴∠ACE=∠CAF,(故小雨的结论正确),在△EOC和FOA中,,∴△EOC≌△FOA,∴OE=OF(故小青的结论正确),∴S△EOC=S△AOF,∴S四边形AFED=S△ADC=S平行四边形ABCD,∴S四边形AFED=S四边形FBCE,(故小夏的结论正确),∵△EOC≌△FOA,∴EC=AF,∵CD=AB,∴DE=FB,DE∥FB,∴四边形DFBE是平行四边形,∵OD=OB,EO⊥DB,∴ED=EB,∴四边形DFBE是菱形,无法判断是正方形,(故小何的结论错误),故选B.【点睛】本题考查了平行四边形的性质、菱形的判定、全等三角形的判定与性质、正方形的判定等,综合性较强,熟练掌握各相关性质与定理是解题的关键.7、A【解析】

分三种情形讨论求解即可解决问题;【详解】解:对于函数y=|x﹣a|,最小值为a+1.情形1:a+1=0,a=﹣1,∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.∴y=|x+2|,符合题意.情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,综上所述,a=﹣2.故选A.【点睛】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.8、C【解析】

根据化简即可.【详解】=.故选C.【点睛】此题的关键是把写成的形式.9、D【解析】

ED垂直平分AB,BE=AE,在通过△ACE的周长为30计算即可【详解】解:∵ED垂直平分AB,∴BE=AE,∵AC=12,EC=5,且△ACE的周长为30,∴12+5+AE=30,∴AE=13,∴BE=AE=13,故选:D.【点睛】本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.10、B【解析】

根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【详解】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,设∠B=α,则∠BDA=∠BAD=2α,又∵∠B+∠BAD+∠BDA=180°,∴α+2α+2α=180°,∴α=36°,即∠B=36°,故选:B.【点睛】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.11、B【解析】

根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B是完全平方公式的形式,故B能分解因式;故选B.12、A【解析】

因为k=−3<0,所以y随x的增大而减小.因为−1<2,所以y1>y2.【详解】解:∵k=﹣3<0,∴y随x的增大而减小,∵﹣1<2,∴y1>y2,故选A.【点睛】本题主要考查一次函数的性质.掌握k>0时y随x的增大而增大,k<0时y随x的增大而减小是解题关键.二、填空题(每题4分,共24分)13、360°.【解析】

解:n(n≥3)边形的外角和都等于360°.14、4【解析】

根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得出四边形DBEC是菱形,由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【详解】∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC,∴BC=1DF=1.又∵∠ABC=90°,∴AB==.∵平行四边形DBEC是菱形,∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4,故答案为4.【点睛】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题.15、【解析】

本题主要考查分式有意义的条件:分母不能为1.【详解】解:∵x-2≠1,

∴x≠2,

故答案是:x≠2.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.16、-1【解析】

根据一次函数解析式可得B点坐标为(0,),所以得出OB=,再由为直角三角形得出∠ADE为直角,结合是直角三角形斜边的中点进一步得出∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,所以△AOB为等腰直角三角形,所以OA长度为,进而得出A点坐标,将其代入解析式即可得出k的值.【详解】由题意得:B点坐标为(0,),∴OB=,∵在直角三角形AOB中,点是线段的中点,∴OD=BD=AD,又∵为直角三角形,∴∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,∴△AOB为等腰直角三角形,∴OA=OB=,∴A点坐标为(,0),∴,解得k=-1.故答案为:-1.【点睛】本题主要考查了一次函数与三角形性质的综合运用,熟练掌握相关概念是解题关键.17、50°【解析】

由旋转可得∠CDE=∠B=70°,∠CED=∠BAC=30°,CA=CE,则∠CAE=∠CEA,再由三角形的外角性质可得∠CDE=∠CAE+∠AED可求出∠CAE的度数.【详解】∵△ABC绕点C顺时针旋转得到△EDC∴∠CDE=∠B=70°,∠CED=∠BAC=30°,CA=CE,∴∠CAE=∠CEA,则∠AED=∠CEA-30°又∵∠CDE=∠CAE+∠AED即∠CAE+∠CAE-30°=70°解得∠CAE=50°故答案为:50°.【点睛】本题考查三角形中的角度计算,解题的关键是利用旋转的性质得到旋转后的角度,并利用三角形的外角性质建立等量关系.18、(-1,2)【解析】

关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.【详解】关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.故Q坐标为(-1,2).故答案为:(-1,2).【点睛】此题考查的是关于y轴对称的两点坐标的特点,掌握两点关于坐标轴或原点对称坐标特点是解决此题的关键.三、解答题(共78分)19、(1),抛物线的对称轴是;(2)点坐标为.理由见解析;(3)在直线的下方的抛物线上存在点,使面积最大.点的坐标为.【解析】

(1)根据点B,C的坐标,利用待定系数法可求出抛物线的解析式,再利用二次函数的性质可求出抛物线的对称轴;(2)连接交对称轴于点,此时的周长最小,利用二次函数图象上点的坐标特征可求出点的坐标,由点,B的坐标,利用待定系数法可求出直线AC的解析式,再利用一次函数图象上点的坐标特征可求出点P的坐标;(3)过点N作NE∥y轴交AC于点E,交x轴于点F,过点A作AD⊥NE于点D,设点N的坐标为(t,t2-t+4)(0<t<5),则点E的坐标为(t,-t+4),进而可得出NE的长,由三角形的面积公式结合S△CAN=S△NAE+S△NCE可得出S△CAN关于t的函数关系式,再利用二次函数的性质即可解决最值问题.【详解】(1)根据已知条件可设抛物线的解析式为,∴,∴抛物线的对称轴是;(2)点坐标为.理由如下:∵点(0,4),抛物线的对称轴是,∴点关于对称轴的对称点的坐标为(6,4),如图1,连接交对称轴于点,连接,此时的周长最小.设直线的解析式为,把(6,4),(1,0)代入得,解得,∴,∵点的横坐标为3,∴点的纵坐标为,∴所求点的坐标为.(3)在直线的下方的抛物线上存在点,使面积最大.设点的横坐标为,此时点,如图2,过点作轴交于;作于点,由点(0,4)和点(5,0)得直线的解析式为,把代入得,则,此时,∵,∴,∴当时,面积的最大值为,由得,∴点的坐标为.【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、轴对称-最短路径问题、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短,确定点P的位置;(3)利用三角形的面积公式结合S△CAN=S△NAE+S△NCE,找出S△CAN关于t的函数关系式.20、(1)见解析;(2)1【解析】

(1)根据等边三角形的性质得到AB=AC,∠C=∠CAB=10°,根据全等三角形的性质得到∠ABE=∠CAF,于是得到结论;(2)根据相似三角形的性质即可得到结论.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=10°,又∵AE=CF,在△ABE和△CAF中,∴∴∠ABE=∠CAF,∵∠AEB=∠BEA,∴(有两个角对应相等的两个三角形相似);(2)解:∵∴,∵BE=3AE,AP=2,∴AB=1,∴等边的边长是1.【点睛】本题考查了全等三角形的证明方法中的边角边定理(两个三角形中有两条边对应相等,并且这两条边的夹角也对应相等,则这两个三角形全等);两个三角形相似的证明方法之一:两个三角形有两个角对应相等,则这两个三角形相似.熟记并灵活运用这两种方法是解本题的关键.21、(1)18°;(2)3;(3)250【解析】

(1)首先计算“乘坐1人”的百分比,在利用圆周角计算“乘坐1人”所对应的圆心角度数.(2)首先计算出总人数,再利用平均法计算每艘的人数.(3)根据平均值估算新增加人数需要的船数.【详解】解:(1)“乘坐1人”所对应的圆心角度数是:(2)估计去年月日这天出租的艘次人自划船平均每艘船的乘坐人数是:人(3)艘4人座的自划船才能满足需求.【点睛】本题主要考查扇形统计图的计算,关键在于一一对应的关系,是考试的热点问题,必须熟练掌握.22、(1)G点的坐标为:(3,4-);(2)EF的解析式为:y=x+4-2;(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)【解析】分析:(1)点G的横坐标与点N的横坐标相同,易得EM为BC的一半减去1,为1,EG=CE=2,利用勾股定理可得MG的长度,4减MG的长度即为点G的纵坐标;(2)由△EMG的各边长可得∠MEG的度数为60°,进而可求得∠CEF的度数,利用相应的三角函数可求得CF长,4减去CF长即为点F的纵坐标,设出直线解析式,把E,F坐标代入即可求得相应的解析式;(3)以点F为圆心,FG为半径画弧,交直线EF于两点;以点G为圆心,FG为半径画弧,交直线EF于一点;做FG的垂直平分线交直线EF于一点,根据线段的长度和与坐标轴的夹角可得相应坐标.详解:(1)易得EM=1,CE=2,∵EG=CE=2,∴MG=,∴GN=4-;G点的坐标为:(3,4-);(2)易得∠MEG的度数为60°,∵∠CEF=∠FEG,∴∠CEF=60°,∴CF=2,∴OF=4-2,∴点F(0,4-2).设EF的解析式为y=kx+4-2,易得点E的坐标为(2,4),把点E的坐标代入可得k=,∴EF的解析式为:y=x+4-2.(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)点睛:本题综合考查了折叠问题和相应的三角函数知识,难点是得到关键点的坐标;注意等腰三角形的两边相等有多种不同的情况.23、(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【解析】

(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.

(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.

(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH⊥x轴于H.

∵A(1,0)、C(0,2),

∴OA=1,OC=2,

∵∠COA=∠CAB=∠AHB=90°,

∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,

∴∠ACO=∠BAH,

∵AC=AB,

∴△COA≌△AHB(AAS),

∴BH=OA=1,AH=OC=2,

∴OH=3,

∴B(3,1),设直线BC的解析式为y=kx+b,则有,解得:,∴;(2)如图2中,

∵四边形ABMN是平行四边形,

∴AN∥BM,

∴直线AN的解析式为:,∴,∴,∵B(3,1),C(0,2),

∴BC=,∴,∴,∴t=s时,四边形ABMN是平行四边形;(3)如图3中,

如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,

连接OQ交BC于E,

∵OE⊥BC,

∴直线OE的解析式为y=3x,由,解得:,∴E(,),

∵OE=OQ,

∴Q(,),

∵OQ1∥BC,∴直线OQ1的解析式为y=-x,

∵OQ1=OB=,设Q1(m,-),

∴m2+m2=10,

∴m=±3,

可得Q1(3,-1),Q3(-3,1),

当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,

易知线段OB的垂直平分线的解析式为y=-3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论