2024年山东省威海市文登区文登实验、三里河中学数学八年级下册期末学业水平测试试题含解析_第1页
2024年山东省威海市文登区文登实验、三里河中学数学八年级下册期末学业水平测试试题含解析_第2页
2024年山东省威海市文登区文登实验、三里河中学数学八年级下册期末学业水平测试试题含解析_第3页
2024年山东省威海市文登区文登实验、三里河中学数学八年级下册期末学业水平测试试题含解析_第4页
2024年山东省威海市文登区文登实验、三里河中学数学八年级下册期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年山东省威海市文登区文登实验、三里河中学数学八年级下册期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知,如图,,,,的垂直平分交于点,则的长为()A. B. C. D.2.下面哪个点在函数的图象上()A. B. C. D.3.下列各组线段中,能构成直角三角形的是()A.2cm,3cm,4cm B.1cm,1cm,cmC.5cm,12cm,14cm D.cm,cm,cm4.如图,菱形的对角线、相交于点,,,过点作于点,连接,则的长为()A. B.2 C.3 D.65.若x≤0,则化简|1﹣x|﹣的结果是()A.1﹣2x B.2x﹣1 C.﹣1 D.16.下列美丽的图案,不是中心对称图形的是()A. B.C. D.7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°8.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=9cm,则点D到AB的距离为()A.3cm B.2cm C.1cm D.4.5cm9.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A.2005 B.2003 C.﹣2005 D.401010.已知直角三角形中30°角所对的直角边长是cm,则另一条直角边的长是()A.4cm B.cm C.6cm D.cm二、填空题(每小题3分,共24分)11.等边三角形的边长为6,则它的高是________12.体育张教师为了解本校八年级女生:“1分钟仰卧起坐”的达标情况,随机抽取了20名女生进行仰卧起坐测试.如图是根据测试结果绘制的频数分布直方图.如果这组数据的中位数是40次,那么仰卧起坐次数为40次的女生人数至少有__________人.13.如图,已知矩形ABCD的边AB=3,AD=8,顶点A、D分别在x轴、y轴上滑动,在矩形滑动过程中,点C到原点O距离的最大值是______.14.函数中自变量的取值范围是_________________.15.x的3倍与4的差是负数,用不等式表示为______.16.如图,在平行四边形ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC=________

。17.在某次数学测验中,班长将全班50名同学的成绩(得分为整数)绘制成频数分布直方图(如图),从左到右的小长方形高的比为0.6:2:4:2.2:1.2,则得分在70.5到80.5之间的人数为________.18.如图所示,数轴上点A所表示的数为a,则a的值是____.三、解答题(共66分)19.(10分)如图,在△ABC中,AC⊥BC,AC=BC,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.(1)求证:△ACE≌△BCF.(2)求证:BF=2AD,(3)若CE=2,求AC的长.20.(6分)解方程:x2﹣6x+8=1.21.(6分)如图,将矩形纸片()折叠,使点刚好落在线段上,且折痕分别与边,相交于点,,设折叠后点,的对应点分别为点,.(1)判断四边形的形状,并证明你的结论;(2)若,且四边形的面积,求线段的长.22.(8分)如图,四边形ABCD是边长为的正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)当M点在何处时,AM+BM+CM的值最小,说明理由;并求出AM、BM、CM的值.23.(8分)观察下列各式:,,,请利用你所发现的规律,(1)计算;(2)根据规律,请写出第n个等式(,且n为正整数).24.(8分)已知,直线与反比例函数交于点,且点的横坐标为4,过轴上一点作垂直于交于点,如图.(1)若点是线段上一动点,过点作,,垂足分别于、,求线段长度的最小值.(2)在(1)的取得最小值的前提下,将沿射线平移,记平移后的三角形为,当时,在平面内存在点,使得、、、四点构成平行四边形,这样的点有几个?直接写出点的坐标.25.(10分)如图,反比例函数y=(k>0)的图象与一次函数y=x的图象交于A、B两点(点A在第一象限).(1)当点A的横坐标为4时.①求k的值;②根据反比例函数的图象,直接写出当﹣4<x<2(x≠0)时,y的取值范围;(2)点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,求k的值.26.(10分)在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.此时,有结论AE=MN,请进行证明;(2)如图2:当点F为AE中点时,其他条件不变,连接正方形的对角线BD,MN与BD交于点G,连接BF,此时有结论:BF=FG,请利用图2做出证明.(3)如图3:当点E为直线BC上的动点时,如果(2)中的其他条件不变,直线MN分别交直线AB、CD于点M、N,请你直接写出线段AE与MN之间的数量关系、线段BF与FG之间的数量关系.图1图2图3

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据中位线的性质得出,,然后根据勾股定理即可求出DE的长.【详解】垂直平分,为中边上的中位线,∴,在中,,.故选D.【点睛】本题考查了三角形的线段长问题,掌握中位线的性质、勾股定理是解题的关键.2、B【解析】

把各点坐标代入解析式即可求解.【详解】A.,y=4×1-2=2≠-2,故不在直线上;B.,y=4×3-2=10,故在直线上;C.,y=4×0.5-2=0,故不在直线上;D.,y=4×(-3)-2=-14,故不在直线上.故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知坐标的代入求解.3、B【解析】

根据勾股定理的逆定理逐一进行判断即可得.【详解】解:A、22+32≠42,故不是直角三角形,故此选项不符合题意;B、12+12=()2,故是直角三角形,故此选项符合题意;C、52+122≠142,故不是直角三角形,故此选项不符合题意;D、(,故不是直角三角形,故此选项不符合题意,故选B.【点睛】本题考查了勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要验证两小边的平方和是否等于最长边的平方即可.4、C【解析】

先证明△ABC为等边三角形,再证明OE是△ABC的中位线,利用三角形中位线即可求解.【详解】解:∵ABCD是菱形,

∴AB=BC,OA=OC,∵∠ABC=60°,

∴△ABC为等边三角形,∵,∴E是BC中点,

∴OE是△ABC的中位线,

∴OE=AB,∵,∴OE=3;

故选:C.【点睛】本题考查了菱形的性质以及等边三角形判定和性质,证明△ABC为等边三角形是解答本题的关键.5、D【解析】试题分析:根据x≤0,可知-x≥0,因此可知1-x≥0,然后根据可求解为|1﹣x|﹣=1-x+x=1.故选:D6、B【解析】

解:A是中心对称图形,不符合题意;B不是中心对称图形,符合题意;C是中心对称图形,不符合题意;D是中心对称图形,不符合题意,故选B.【点睛】本题考查中心对称图形,正确识图是解题的关键.7、B【解析】

根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.【详解】∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.【点睛】本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.8、A【解析】

如图,过点D作DE⊥AB于E,则点D到AB的距离为DE的长,根据已知条件易得DC=1.利用角平分线性质可得到DE=DC=1。【详解】解:如图,过点D作DE⊥AB于E,

∵BD:DC=2:1,BC=9,∵AD平分∠BAC,∠C=90°,

∴DE=DC=1.

故选:A.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,要注意DC的求法.9、B【解析】

根据一元二次方程根的定义和根与系数的关系求解则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=-,x1x2=.而α2+3α+β=α2+2α+(α+β),即可求解.【详解】α,β是方程x2+2x−2005=0的两个实数根,则有α+β=−2.α是方程x2+2x−2005=0的根,得α2+2α−2005=0,即:α2+2α=2005.所以α2+3α+β=α2+2α+(α+β)=α2+2α−2=2005−2=2003,故选B.【点睛】此题考查根与系数的关系,一元二次方程的解,解题关键在于掌握运算法则.10、C【解析】如图,∵∠C=90°,∠B=30°,AC=2cm,∴AB=2AC=4cm,由勾股定理得:BC==6cm,故选C.二、填空题(每小题3分,共24分)11、【解析】

根据等边三角形的性质:三线合一,利用勾股定理可求解高.【详解】由题意得底边的一半是3,再根据勾股定理,得它的高为=3,故答案为3.【点睛】本题考查的是等边三角形的性质,勾股定理,解答本题的关键是掌握好等腰三角形的三线合一:底边上的高、中线,顶角平分线重合.12、1【解析】

根据中位数的定义求解可得.【详解】解:∵这20个数据的中位数是第10、11个数据的平均数,且第10个、11个全部位于第三组(40≤x<10)内,∴第10个、11个数据均为40,∵小于40的有6个,∴第7、8、9、10、11个数据一定为40,∴仰卧起坐次数为40次的女生人数至少有1人,故答案为:1.【点睛】本题主要考查频数分布直方图和中位数,解题的关键是掌握中位数的概念.13、1【解析】

取AD的中点E,连接OE,CE,OC,根据直角三角形斜边上的中线等于斜边的一半即可求出OE,然后根据勾股定理即可求CE,然后根据两点之间线段最短即可求出OC的最大值.【详解】如图,取AD的中点E,连接OE,CE,OC,∵∠AOD=10°,∴Rt△AOD中,OE=AD=4,又∵∠ADC=10°,AB=CD=3,DE=4,∴Rt△CDE中,CE==5,又∵OC≤CE+OE=1(当且仅当O、E、C共线时取等号),∴OC的最大值为1,即点C到原点O距离的最大值是1,故答案为:1.【点睛】此题考查的是直角三角形的性质和求线段的最值问题,掌握直角三角形斜边上的中线等于斜边的一半、利用勾股定理解直角三角形和两点之间线段最短是解决此题的关键.14、且【解析】

根据分式和二次根式有意义的条件列不等式组求解即可.【详解】根据分式和二次根式有意义的条件可得解得且故答案为:且.【点睛】本题考查了函数自变量取值范围的问题,掌握分式和二次根式有意义的条件是解题的关键.15、【解析】

“x的3倍”即3x,“与4的差”可表示为,根据负数即“”可得不等式.【详解】x的3倍为“3x”,x的3倍与4的差为“3x-4”,所以x的3倍与4的差是负数,用不等式表示为,故答案为.【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.16、【解析】

证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【详解】四边形ABCD为平行四边形,CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°AC=CD=2,∠ACD=90°△ACD为等腰直角三角形∴BC=AD==.故答案是:.【点睛】考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.17、20【解析】

所有小长方形高的比为0.6:2:4:2.2:1.2,可以求出得分在70.5到80.5之间的人数的小长方形的高占总高的比,进而求出得分在70.5到80.5之间的人数.【详解】解:人

故答案为:20【点睛】考查频数分布直方图的制作特点以及反映数据之间的关系,理解各个小长方形的高表示的实际意义,用所占比去乘以总人数就得出相应的人数.18、【解析】

根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.【详解】∵直角三角形的两直角边为1,2,∴斜边长为,那么a的值是:﹣.故答案为.【点睛】此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析;(3)2+2.【解析】

(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根据垂直的定义得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,证得△BCF≌△ACE;(2)由(1)得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到结论;(3)由(1)知△BCF≌△ACE,推出CF=CE=2,在Rt△CEF中,EF=CE2+CF2=2,由于BD⊥AE【详解】(1)∵AC⊥BC,BD⊥AE∴∠FCB=∠BDA=90°∠CBF+∠CFB=90°,∠DAF+∠AFD=90°∵∠CFB=∠AFD∴∠CBF=∠CAE∵AC=BC∴△ACE≌△BCF(2)由(1)知△ACE≌△BCF得AE=BF∵BE=BA,BD⊥AE∴AD=ED,即AE=2AD∴BF=2AD(3)由(1)知△ACE≌△BCF∴CF=CE=2∴在Rt△CEF中,EF=CE2∵BD⊥AE,AD=ED,∴AF=FE=2,∴AC=AF+CF=2+2.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,熟练掌握全等三角形的判定和性质定理是解题的关键.20、x1=2x2=2.【解析】

应用因式分解法解答即可.【详解】解:x2﹣6x+8=1(x﹣2)(x﹣2)=1,∴x﹣2=1或x﹣2=1,∴x1=2x2=2.【点睛】本题考查了解一元二次方程﹣因式分解法,解答关键是根据方程特点进行因式分解.21、(1)四边形为菱形,理由见解析;(2)【解析】

(1)根据折叠的性质可得EC=EG,GF=CF,,由GF∥EC,可得,进一步可得GE=GF,于是可得结论;(2)根据题意可先求得CE的长,过点E作EK⊥GF于点K,在Rt△GEK中,根据勾股定理可求得GK的长,于是FK可求,在Rt△EFK中,再利用勾股定理即可求得结果.【详解】(1)四边形为菱形,理由如下:证明:由折叠可得:,,,又∵,∴,∴,∴,∴,∴四边形为菱形.(2)如图,∵四边形为菱形,且其面积为,∴,∴,过点E作EK⊥GF于点K,则EK=AB=4,在Rt△GEK中,由勾股定理得:,∴,在Rt△EFK中,由勾股定理得:.【点睛】本题考查了矩形的性质、折叠的性质、菱形的判定方法和勾股定理等知识,知识点虽多,但难度不大,熟练掌握折叠的性质、菱形的判定方法和勾股定理是解题的关键.22、(1)证明见解析;(2)M点位于BD与CE的交点时,理由见解析;,【解析】

(1)由旋转的性质可知:BN=BM,BA=BE,然后再证明∠NBE=∠MBA,最后依据SAS证明△AMB≌△ENB即可;(2)连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,过点E作EF⊥BC,垂足为F,先证明∠EBF=30°,从而可求得EF,BC的长,由(1)可知EN=AM,然后证明△BNM为等边三角形,从而可得到BM=MN,则AM+BM+MC=EN+NM+MC≤EC,最后,依据勾股定理求得EC的长即可.【详解】解:(1)由旋转的性质可知:BN=BM,BA=BE.∵△BAE为等边三角形,∴∠EBA=60°.又∵∠MBN=60°,∴∠NBE=∠MBA.在:△AMB和△ENB中,BN=BM,∠NBE=∠MBA,BA=BE,∴△AMB≌△ENB.(2)如图所示:连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,过点E作EF⊥BC,垂足为F.∵△ABE为等边三角形,ABCD为正方形,∴∠EBA=60°,∠ABC=90°,∴∠EBC=150°.∴∠EBF=30°.∴∴由(1)可知:△AMB≌△ENB,∴EN=AM.又∵BN=BM,∠NBM=60°,∴△BNM为等边三角形.∴BM=MN.∴AM+BM+MC=EN+NM+MC≥EC.∴AM+BM+MC的最小值=EC过点M作MG⊥BC,垂足为G,设BG=MG=x,则NB=x,EN=AM=MC∴∴x=∴【点睛】本题主要考查的是主要考查的是旋转的性质、正方形的性质、全等三角形的性质和判定,找出AM+BM+MC取得最小值的条件是解题的关键.23、(1);(2)【解析】

(1)根据已知数据变化规律进而将原式变形求出答案;(2)根据已知数据变化规律进而将原式变形求出答案.【详解】解:(1)原式===(2)观察下列等式:第n个等式是.【点睛】本题主要考查了数字变化规律,正确将原式变形是解题关键.24、(1)最小值为4.8;(2)这样的点有3个,;;.【解析】

(1)利用反比例函数图象上点的坐标特征可求出点A的坐标,由点A的坐标,利用待定系数法可求出直线0A的解析式,设点P的坐标为(m,m)(),则PE=m,PF=8-m,利用勾股定理可找出EF2关于m的函数关系式,再利用二次函数的性质,即可求出EF2的最小值,进而可得出段EF长度的最小值;(2)由(1)的结论结合平移的性质,可得出平移后点、、的坐标.【详解】解:(1)当x=4时,∴设直线OA的解析式为将代入得k=设点P的坐标为(m,m)()则PE=m,PF=8-m∴FE2=PF2+PE2即FE2=(m)2+(8-m)2=(m-)2+∴当m=时,EF2取得最小值,此时EF最小值为∴最小值为4.8.(2)这样的点有3个.;;【点睛】本题考查了反比例函数图象上点的坐标特征、待定系数法求解一次函数解析式、勾股定理以及平行四边形的性质等知识点.25、(1)①k=12;②y的取值范围是y<﹣3或y>6;(2)k=6.【解析】

(1)①先求得点A的坐标,再把点A的坐标代入y=(k>0)即可求得k值;②求得当x=﹣4和x=2时y的值,结合图像,再利用反比例函数的性质即可求得y的取值范围;(2)设点A为(a,),根据勾股定理求得OA=,根据函数的对称性及直角三角形斜边的性质可得OA=OB=OC=,根据三角形的面积公式求得a=,即可得点A为(2,),代入即可求得k值.【详解】(1)①将x=4代入y=x得,y=3,∴点A(4,3),∵反比例函数y=(k>0)的图象与一次函数y=x的图象交于A点,∴3=,∴k=12;②∵x=﹣4时,y==﹣3,x=2时,y=6,∴由反比例函数的性质可知,当﹣4<x<2(x≠0)时,y的取值范围是y<﹣3或y>6;(2)设点A为(a,),则OA==,∵点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,∴OA=OB=OC=,∴S△ACB====10,解得,a=,∴点A为(2,),∴=,解得,k=6.【点睛】本题考查了反比例函数与一次函数的交点问题,熟知反比例函数与一次函数图象的交点坐标满足两函数解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论