版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市巴南区七校共同体2024届数学八年级下册期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.将直线y=kx-1向上平移2个单位长度,可得直线的解析式为()A.y=kx+1B.y=kx-3C.y=kx+3D.y=kx-12.下列计算,正确的是()A.8+2=8C.12-33.在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是()A. B. C. D.4.下列因式分解正确的是()A.x3﹣x=x(x2﹣1) B.﹣a2+6a﹣9=﹣(a﹣3)2C.x2+y2=(x+y)2 D.a3﹣2a2+a=a(a+1)(a﹣1)5.下列关于x的方程中,是分式方程的是().A. B.C. D.3x-2y=16.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米7.如图,为等边三角形,,、相交于点,于点,且,,则的长为()A.7 B.8 C.9 D.108.如图所示,在平行四边形中,对角线相交于点,,,,则平行四边形的周长为()A. B.C. D.9.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>510.用配方法解方程变形后为A. B.C. D.11.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.12.已知关于x的一元二次方程x2-x+k=0的一个根是2,则k的值是()A.-2 B.2 C.1 D.1二、填空题(每题4分,共24分)13.若x-y=,xy=,则代数式(x-1)(y+1)的值等于_____.14.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.求作:线段AB的垂直平分线.小红的作法如下:如图,①分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点C;②再分别以点A和点B为圆心,大于AB的长为半径(不同于①中的半径)作弧,两弧相交于点D,使点D与点C在直线AB的同侧;③作直线CD.所以直线CD就是所求作的垂直平分线.老师说:“小红的作法正确.”请回答:小红的作图依据是_____.15.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′.则线段B′C=.16.如图所示,已知AB=6,点C,D在线段AB上,AC=DB=1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.17.如果点A(1,m)与点B(3,n)都在反比例函数y=(k>0)的图象上,那么代数式m-3n+6的值为______.18.若a,b都是实数,b=+﹣2,则ab的值为_____.三、解答题(共78分)19.(8分)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查发现:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件,设每件涨价x元(x为非负整数),每星期的销量为y件.(1)写出y与x的关系式;(2)要使每星期的利润为1560元,从有利于消费者的角度出发,售价应定为多少?20.(8分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系.21.(8分)如图,矩形ABCD中,AB=6cm,BC=8cm,E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,运动时间为t(0≤t≤5)秒.(1)若G、H分别是AB、DC的中点,且t≠2.5s,求证:以E、G、F、H为顶点的四边形始终是平行四边形;(2)在(1)的条件下,当t为何值时?以E、G、F、H为顶点的四边形是矩形;(3)若G、H分别是折线A-B-C,C-D-A上的动点,分别从A、C开始,与E.F相同的速度同时出发,当t为何值时,以E、G、F、H为顶点的四边形是菱形,请直接写出t的值.22.(10分)我们给出如下定义:把对角线互相垂直的四边形叫做“正交四边形”.如图1,在四边形ABCD中,AC⊥BD,四边形ABCD就是“正交四边形”.(1)下列四边形,一定是“正交四边形”的是______.①平行四边形②矩形③菱形④正方形(2)如图2,在“正交四边形”ABCD中,点E、F、G、H(3)小明说:“计算‘正交四边形’的面积可以仿照菱形的方法,面积是对角线之积的一半.”小明的说法正确吗?如果正确,请给出证明;如果错误,请给出反例.23.(10分)解方程:x2-3x=5x-124.(10分)健身运动已成为时尚,某公司计划组装A、B两种型号的健身器材共40套,捐给社区健身中心.组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A、B两种型号的健身器材时,共有多少种组装方案?(2)组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元,求总组装费用最少的组装方案,最少总组装费用是多少?25.(12分)如图1、如图2均是边长为1的正方形网格,请按要求用实线画出顶点在格点上的图形。(1)在图1上,画出一个面积最大的矩形ABCD,并求出它的面积;(2)在图2上,画出一个菱形ABCD,并求出它的面积。26.如图,中,.(1)请用尺规作图的方法在边上确定点,使得点到边的距离等于的长;(保留作用痕迹,不写作法)(2)在(1)的条件下,求证:.
参考答案一、选择题(每题4分,共48分)1、A【解析】分析:根据上下平移时,b的值上加下减的规律解答即可.详解:由题意得,∵将直线y=kx-1向上平移2个单位长度,∴所得直线的解析式为:y=kx-1+2=kx+1.故选A.点睛:本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b向左平移m个单位,是y=k(x+m)+b,向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;②y=kx+b向上平移n个单位,是y=kx+b+n,向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.2、C【解析】
根据二次根式的运算法则,化简各式进行.【详解】A、8+2=10≠8+B、-4<0,-9<0,-4,-9没有意义,故C、12-3=2+D、412=故选:C.【点睛】此题考查二次根式的性质与化简,解题关键在于掌握运算法则3、B【解析】
根据中心对称图形的概念解答即可.【详解】选项A,是轴对称图形,不是中心对称图形;选项B,不是轴对称图形,是中心对称图形;选项C,不是轴对称图形,不是中心对称图形;选项D,不是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.4、B【解析】
根据提公因式法和公式法进行分解因式即可判断.【详解】x3﹣x=x(x2﹣1)=x(x+1)(x-1),故A错误;﹣a2+6a﹣9=﹣(a﹣3)2,故B正确;x2+y2不能用完全平方公式进行因式分解,故C错误;a3﹣2a2+a=a(a2-2a+1)=a(a-1)2,故D错误.故选:B【点睛】本题考查的是因式分解,熟练掌握提公因式法及平方差公式、完全平方公式是关键.5、B【解析】
根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A.C.D项中的方程分母中不含未知数,故不是分式方程;B.方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.6、C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.7、C【解析】
分析:由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=8,AD=BE.则易求.【详解】解:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,∴△ABE≌△CAD(SAS);∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=10°,则∠PBQ=10°−60°=30°∵PQ=3,∴在Rt△BPQ中,BP=2PQ=8;又∵PE=1,∴AD=BE=BP+PE=1.故选:C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、含有30°的直角三角形的性质,解题的关键是证明△BAE≌△ACD.8、D【解析】
由▱ABCD的对角线AC,BD相交于点O,AE=EB,易得DE是△ABC的中位线,即可求得BC的长,继而求得答案.【详解】∵▱ABCD的对角线AC,BD相交于点O,
∴OA=OC,AD=BC,AB=CD=5,
∵AE=EB,OE=3,
∴BC=2OE=6,
∴▱ABCD的周长=2×(AB+BC)=1.
故选:D.【点睛】此题考查了平行四边形的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.9、C【解析】
因为=-a(a≤0),由此性质求得答案即可.【详解】∵=x-1,∴1-x≤0∴x≥1.故选C.【点睛】此题考查二次根式的性质:=a(a≥0),=-a(a≤0).10、A【解析】
在本题中,把常数项-2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【详解】把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2,方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4,配方得(x-2)2=1.故选A【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.11、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12、A【解析】
知道方程的一根,把x=2代入方程中,即可求出未知量k.【详解】解:将x=2代入一元二次方程x2-x+k=0,
可得:4-2+k=0,
解得k=-2,
故选:A.【点睛】本题主要考查了一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.二、填空题(每题4分,共24分)13、2-2【解析】
解:∵=,原式故答案为:14、到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【解析】分析:根据线段垂直平分线的作法即可得出结论.详解:如图,∵由作图可知,AC=BC=AD=BD,∴直线CD就是线段AB的垂直平分线.故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.点睛:本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.15、.【解析】试题解析:连接BB′交AE于点O,如图所示:由折线法及点E是BC的中点,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB'C三内角之和为180°,∴∠BB'C=90°;∵点B′是点B关于直线AE的对称点,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2-AO2=BE2-(AE-AO)2将AB=4,BE=3,AE==5代入,得AO=cm;∴BO=,∴BB′=2BO=cm,∴在Rt△BB'C中,B′C=cm.考点:翻折变换(折叠问题).16、1【解析】
分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN==1,∴点G移动路径的长是1,故答案为:1.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.17、1【解析】
点A(1,m)与点B(3,n)都在反比例函数y=(k>0)的图象上,代入可求出m、n,进而求代数式的值.【详解】解;把点A(1,m)、B(3,n)代入y=得:m=3,n=1∴m-3n+1=3-3×1+1=1.故答案为:1.【点睛】考查反比例函数图象上点的坐标特点,理解函数图象的意义,正确的代入和细心的计算是解决问题的前提.18、1【解析】
直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.【详解】解:∵b=+﹣2,∴∴1-2a=0,
解得:a=,则b=-2,
故ab=()-2=1.
故答案为1.【点睛】此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a的值是解题关键.三、解答题(共78分)19、(1)y=150-10x(0≤x≤5且x为整数);(2)售价应定为42元.【解析】
(1)根据每周销量=150-10×每件涨价钱数,即可得出y与x的关系式;(2)根据每周的总利润=每件商品的利润×每周的销量,可得关于x的一元二次方程,解之即得x的值,取其较小者代入40+x即可得出结论.【详解】解:(1)由题意,得y=150-10x(0≤x≤5且x为整数);(2)设每星期的利润为w元,则w=(40+x-30)y=(x+10)(150-10x)=-10x2+50x+1500,要使每星期的利润为1560元,则w=1560,即-10x2+50x+1500=1560.解这个方程得:x1=2,x2=3.∴当x=2或3时,可使每星期的利润为1560元,从有利于消费者的角度出发,应取x=2,此时40+x=42,即售价应定为42元.【点睛】本题是一元二次方程的应用问题中较为典型的类型,解题的思路一般是先表示出销量,再表示出总利润,最后得出方程.需要注意的是,在列方程时,要认真审题,加强分析,注意题意中的“一涨一少”,明确涨的是什么,少的是什么.20、(1)证明见解析;(2)补全图形如图,证明见解析;(3)MN=(BM+ND).【解析】
(1)延长NO交BM交点为F.根据题意,先证明△BOF≌△DON,得到NO=FO,最后结合题意,得到MO=NO=FO.(2)延长MO交ND的延长线于F.根据题意及图像,先证明△BOM≌△FOD,得到MO=FO,再由FN⊥MN,OF=OM,得到NO=OM=OF.(3)根据题意,先证明B,M,C,O四点共圆,得到∠FMN=∠OBC=30°,再由FN⊥MN,得到MN=FN=(BM+DN).【详解】(1)延长NO交BM交点为F,如图∵四边形ABCD是菱形∴AC⊥BD,BO=DO∵DN⊥MN,BM⊥MN∴BM∥DN∴∠DBM=∠BDN,且BO=DO,∠BOF=∠DON∴△BOF≌△DON∴NO=FO,∵BM⊥MN,NO=FO∴MO=NO=FO(2)如图:延长MO交ND的延长线于F∵BM⊥PC,DN⊥PC∴BM∥DN∴∠F=∠BMO∵BO=OD,∠F=∠BMO,∠BOM=∠FOD∴△BOM≌△DOF∴MO=FO∵FN⊥MN,OF=OM∴NO=OM=OF(3)如图:∵∠BAD=120°,四边形ABCD是菱形,∴∠ABC=60°,AC⊥BD∵∠OBC=30°∵BM⊥PC,AC⊥BD∴B,M,C,O四点共圆∴∠FMN=∠OBC=30°∵FN⊥MN∴MN=FN=(BM+DN)【点睛】本题主要考查了全等三角形的判定定理及四点共圆的定义,熟练掌握全等三角形的判定定理及四点共圆的定义是本题解题关键.21、(1)证明见解析;(2)当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)t为秒时,四边形EGFH是菱形.【解析】
(1)根据勾股定理求出AC,证明△AFG≌△CEH,根据全等三角形的性质得到GF=HE,利用内错角相等得GF∥HE,根据平行四边形的判定可得结论;(2)如图1,连接GH,分AC-AE-CF=1.AE+CF-AC=1两种情况,列方程计算即可;(3)连接AG.CH,判定四边形AGCH是菱形,得到AG=CG,根据勾股定理求出BG,得到AB+BG的长,根据题意解答.【详解】解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴∠BAC=∠DCA,∵AB=6cm,BC=1cm,∴AC=10cm,∵G、H分别是AB、DC的中点,∴AG=AB,CH=CD,∴AG=CH,∵E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,∴AE=CF,∴AF=CE,∴△AGF≌△CHE(SAS),∴GF=HE,∠AFG=∠CEH,∴GF∥HE,∴以E、G、F、H为顶点的四边形始终是平行四边形;(2)如图1,连接GH,由(1)可知四边形EGFH是平行四边形,∵G、H分别是AB.DC的中点,∴GH=BC=1cm,∴当EF=GH=1cm时,四边形EGFH是矩形,分两种情况:①若AE=CF=2t,则EF=10-4t=1,解得:t=0.5,②若AE=CF=2t,则EF=2t+2t-10=1,解得:t=4.5,即当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)如图2,连接AG、CH,∵四边形GEHF是菱形,∴GH⊥EF,OG=OH,OE=OF,∵AF=CE∴OA=OC,∴四边形AGCH是菱形,∴AG=CG,设AG=CG=x,则BG=1-x,由勾股定理得:AB2+BG2=AG2,即62+(1-x)2=x2,解得:x=,∴BG=1-=,∴AB+BG=6+=,t=÷2=,即t为秒时,四边形EGFH是菱形.【点睛】本题是四边形的综合题,考查了矩形的性质.平行四边形的判定和菱形的判定,掌握矩形的性质定理.菱形的判定定理,灵活运用分情况讨论思想是解题的关键.22、(1)③④;(2)详见解析;(3)小明的说法正确.【解析】
(1)由特殊四边形的性质,可知菱形和正方形的对角线互相垂直;(2)首先根据三角形中位线定理和平行四边形的判定定理证明四边形EFGH是平行四边形,然后再证明HG⊥HE即可;(3)由S四边形【详解】答:(1)③④(2)证明:∵H、G分别是AD、CD∵E、F分别是AB、CB∴HG∥EF,HG=EF.∴四边形EFGH是平行四边形∵E、H分别是∴EH∥BD∵四边形ABCD是“正交四边形”∴AC⊥BD∴HG⊥HE∴四边形EFGH是矩形(3)答:小明的说法正确.证明:S=【点睛】此题考查中点四边形,矩形的判定,解题关键在于得出HG⊥HE.23、x=4±【解析】
根据一元二次方程的解法即可求出答案.【详解】解:∵x2-3x=5x-1,∴x2-8x=-1∴x2-8x+16=15,∴(x-4)2=15,∴x=4±;【点睛】此题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题是属于基础题型.24、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业之间借款协议范本
- 三人合伙协议书2篇
- 2024年度居间服务协议:工程设计合同3篇
- 水车租赁合同电子版
- 汤姆索亚历险记课件教学
- 自动贩卖机场地协议书
- 数据保密合同
- 2024年度工程市场营销合同
- 二零二四年度工程设备采购合同标的详细描述及其服务内容扩展协议3篇
- 墙布销售的合同范本
- 宫颈癌保留生育能力的手术
- 网页设计试题及答案
- 名创优品课件教学课件
- 2024苏教版科学小学六年级上册第5单元《科技改变生活》教学设计及教学反思
- 人教版八年级英语上册期末专项复习-完形填空和阅读理解(含答案)
- 第5课 互联网接入 教学设计 2023-2024学年浙教版(2023)初中信息技术七年级上册
- 中小学劳动教育实践基地建设标准
- 传感器技术-武汉大学
- 模块二 途中导游服务
- 2024黑龙江省交通投资集团招聘38人高频500题难、易错点模拟试题附带答案详解
- 2024-2030年中国纺织服装行业市场发展分析及发展趋势与投资研究报告
评论
0/150
提交评论