2024届廊坊三中数学八年级下册期末质量检测试题含解析_第1页
2024届廊坊三中数学八年级下册期末质量检测试题含解析_第2页
2024届廊坊三中数学八年级下册期末质量检测试题含解析_第3页
2024届廊坊三中数学八年级下册期末质量检测试题含解析_第4页
2024届廊坊三中数学八年级下册期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届廊坊三中数学八年级下册期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,矩形中,分别是线段的中点,,动点沿的路线由点运动到点,则的面积是动点运动的路径总长的函数,这个函数的大致图象可能是()A. B. C. D.2.某中学在“一元钱捐助”献爱心捐款活动中,六个年级捐款如下(单位:元):888,868,688,886,868,668那么这组数据的众数、中位数、平均数分别为()A.868,868,868 B.868,868,811 C.886,868,866 D.868,886,8113.下列说法错误的是()A.必然事件发生的概率为1 B.不确定事件发生的概率为0.5C.不可能事件发生的概率为0 D.随机事件发生的概率介于0和1之间4.▱ABCD中,对角线AC与BD相交于点E,将△ABC沿AC所在直线翻折至△AB′C,若点B的落点记为B′,连接B′D、B′C,其中B′C与AD相交于点G.①△AGC是等腰三角形;②△B′ED是等腰三角形;③△B′GD是等腰三角形;④AC∥B′D;⑤若∠AEB=45°,BD=2,则DB′的长为;其中正确的有()个.A.2 B.3 C.4 D.55.如图,在正方形中,,是对角线上的动点,以为边作正方形,是的中点,连接,则的最小值为()A. B. C.2 D.6.发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,1.其中能作为直角三角形的三边长的有A.1组 B.2组 C.3组 D.4组7.点(1,-6)关于原点对称的点为()A.(-6,1) B.(-1,6) C.(6,-1) D.(-1,-6)8.一元二次方程根的情况为()A.有两个相等的实数根 B.有两个正实数根C.有两个不相等的实数根 D.有两个负实数根9.如果反比例函数y=的图象经过点(-1,-2),则k的值是()A.2 B.-2 C.-3 D.310.为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区户家庭一周的使用数量,结果如下(单位:个):,,,,,,,,,.关于这组数据,下列结论错误的是()A.极差是 B.众数是 C.中位数是 D.平均数是11.下列函数中,y随x的增大而减少的函数是()A.y=2x+8B.y=-2+4xC.y=-2x+8D.y=4x12.顺次连接一个四边形的各边中点,得到了一个正方形,这个四边形最可能是()A.正方形 B.矩形 C.菱形 D.平行四边形二、填空题(每题4分,共24分)13.如图所示,直线y=kx+b经过点(﹣2,0),则关于x的不等式kx+b<0的解集为_____.14.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.15.在Rt△ABC中,∠C=90°,若a=6,b=8,则c=________.16.分式x2-9x+3的值为0,那么x17.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为______.18.若是李华同学在求一组数据的方差时,写出的计算过程,则其中的=_____.三、解答题(共78分)19.(8分)如图,在中,是它的一条对角线,过、两点分别作,,、为垂足.求证:四边形是平行四边形.20.(8分)如图1,在矩形ABCD中,AB=4,AD=5,E为射线BC上一点,DF⊥AE于F,连结DE.(1)当E在线段BC上时①若DE=5,求BE的长;②若CE=EF,求证:AD=AE;(2)连结BF,在点E的运动过程中:①当△ABF是以AB为底的等腰三角形时,求BE的长;②记△ADF的面积为S1,记△DCE的面积为S2,当BF∥DE时,请直接写出S1:S2的值.21.(8分)计算下列各式的值:(1);(2)(1﹣)2﹣|﹣2|.22.(10分)如图,在矩形中,为对角线,点为边上一动点,连结,过点作,垂足为,连结.(1)证明:;(2)当点为的中点时,若,求的度数;(3)当点运动到与点重合时,延长交于点,若,则.23.(10分)在倡导“社会主义核心价值观”演讲比赛中,某校根据初赛成绩在七、八年级分别选出10名同学参加决赛,对这些同学的决赛成绩进行整理分析,绘制成如下团体成绩统计表和选手成绩折线统计图:七年级八年级平均数85.7_______众数______________方差37.427.8根据上述图表提供的信息,解答下列问题:(1)请你把上面的表格填写完整;(2)考虑平均数与方差,你认为哪个年级的团体成绩更好?(3)假设在每个年级的决赛选手中分别选出2个参加决赛,你认为哪个年级的实力更强一些?请说明理由.24.(10分)在菱形中,点是边的中点,试分别在下列两个图形中按要求使用无刻度的直尺画图.(1)在图1中,过点画的平行线;(2)在图2中,连接,在上找一点,使点到点,的距离之和最短.25.(12分)党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).26.某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据题意分析△PAB的面积的变化趋势即可.【详解】根据题意当点P由E向C运动时,△PAB的面积匀速增加,当P由C向D时,△PAB的面积保持不变,当P由D向F运动时,△PAB的面积匀速减小但不为1.故选C.【点睛】本题为动点问题的函数图象探究题,考查了一次函数图象的性质,分析动点到达临界点前后函数值变化是解题关键.2、B【解析】

根据众数的定义即可得出众数,根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的中位数,根据平均数公式即可得出平均数.【详解】解:由888,868,688,886,868,668可知众数为:868将888,868,688,886,868,668进行排序668,688,868,868,886,888,可知中位数是:平均数为:故答案为:868,868,811故选:B【点睛】本题考查了众数、平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列,正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.3、B【解析】

A选项:∵必然事件发生的概率为1,故本选项正确;

B选项:∵不确定事件发生的概率介于1和0之间,故本选项错误;

C选项:∵不可能事件发生的概率为0,故本选项正确;

D选项:∵随机事件发生的概率介于0和1之间,故本选项正确;

故选B.4、D【解析】

利用平行四边形的性质、翻折不变性一一判断即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴BE=DE,AD∥BC,AD=BC,∴∠GAC=∠ACB,由翻折可知:BE=EB′=DE,∠ACB=∠ACG,CB=CB′,∴∠GAC=∠ACG,∴△AGC,△B′ED是等腰三角形,故①②正确,∵AB′=AB=DC,CB′=AD,DB′=B′D,∴△ADB′≌△CB′D,∴∠ADB′=∠CB′D,∴GD=GB′,∴△B′GD是等腰三角形,故③正确,∵∠GAC=∠GCA,∠AGC=∠DGB′,∴∠GAC=∠GDB′,∴AC∥DB′,故④正确.∵∠AEB=45°,BD=2,∴∠BEB′=∠DEB′=90°,∵DE=EB′=1,∴DB′=,故⑤正确.故选:D.【点睛】本题考查翻折变换、等腰三角形的性质、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、A【解析】

取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,再根据正方形及勾股定理求出OE,即可得到GH的长.【详解】取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,∵AD=AB=4,∴AO=AB=2在Rt△AOE中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4解得OE=∴GH的最小值为故选A.【点睛】本题考查了正方形的性质,根据题意确定E点的位置是解题关键.6、C【解析】①∵82+152=172,∴能组成直角三角形;②∵52+122=132,∴能组成直角三角形;③122+152≠202,∴不能组成直角三角形;④72+242=12,∴能组成直角三角形.故选C.7、B【解析】

根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,可得答案.【详解】解:点(1,-6)关于原点对称的点的坐标是(-1,6);故选:B.【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.8、C【解析】

根据方程的系数结合根的判别式,可得出△=8>0,由此即可得出原方程有两个不相等的实数根.【详解】解:∵在方程x2+2x-1=0中,△=22-4×1×(-1)=8>0,

∴方程x2+2x-1=0有两个不相等的实数根.

故选:C.【点睛】本题考查根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9、D【解析】

此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.【详解】根据题意,得-2=,即2=k-1,解得,k=1.故选D.考点:待定系数法求反比例函数解析式.10、B【解析】试题分析:根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断:A、极差=14﹣7=7,结论正确,故本选项错误;B、众数为7,结论错误,故本选项正确;C、中位数为8.5,结论正确,故本选项错误;D、平均数是8,结论正确,故本选项错误.故选B.11、C【解析】试题分析:一次函数y=kx+b的图象有两种情况:①当k>0时,函数y=kx+b的值随x的值增大而增大;②当k<0时,函数y=kx+b的的值随x的值增大而减小.∵函数y随x的增大而减少,∴k<0,符合条件的只有选项C,故答案选C.考点:一次函数y=kx+b的图象及性质.12、A【解析】

利用连接四边形各边中点得到的四边形是正方形,则结合正方形的性质及三角形的中位线的性质进行分析,从而不难求解.【详解】解:如图点E,F,G,H分别是四边形ABCD各边的中点,且四边形EFGH是正方形.

∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是正方形.

∴EF=EH,EF⊥EH,

∵BD=2EF,AC=2EH,

∴AC=BD,AC⊥BD,

即四边形ABCD满足对角线相等且垂直,

选项A满足题意.

故选:A.【点睛】本题考查了利用三角形中位线定理得到新四边形各边与相应线段之间的数量关系和位置.熟练掌握特殊四边形的判定是解题的关键.二、填空题(每题4分,共24分)13、x<﹣1.【解析】

结合函数图象,写出直线在轴下方所对应的自变量的范围即可.【详解】∵直线经过点(-1,0),

∴当时,,

∴关于的不等式的解集为.

故答案为:.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合.14、90分.【解析】试题分析:根据加权平均数的计算公式求解即可.解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.考点:加权平均数.15、10【解析】

根据勾股定理c为三角形边长,故c=10.16、2【解析】

分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意可得:x2﹣9=1且x+2≠1,解得x=2.故答案为:2.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:分母不为零这个条件不能少.17、x>-1.【解析】

结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】观察图象知:当x>-1时,kx+b>4,故答案为x>-1.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18、1【解析】

一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,所以其中的是、、、的平均数,据此求解即可.【详解】解:,

是、、、的平均数,

故答案为:1.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.三、解答题(共78分)19、详见解析【解析】

由题目条件推出,推出;由,推出根据有一组对边平行且相等的四边形是平行四边形,可以得出结论.【详解】证明:∵四边形为平行四边形,∴,.∵.∵,,∴.∴,.∴.∴四边形是平行四边形.【点睛】本题考查了平行四边形的判定,掌握平行四边形的判定定理是解题的关键.20、(1)①BE=2;②证明见解析;(2)①BE=2;②S1:S2=1【解析】【分析】(1)①在矩形ABCD中,∠B=∠DCE=90°,BC=AD=5,DC=AB=4,由勾股定理求得CE的长,即可求得BE的长;②证明△CED≌△DEF,可得∠CED=∠FED,从而可得∠ADE=∠AED,即可得到AD=AE;(2)①分两种情况点E在线段BC上、点E在BC延长线上两种情况分别讨论即可得;②S1:S2=1,当BF//DE时,延长BF交AD于G,由已知可得到四边形BEDG是平行四边形,继而可得S△DEF=S平行四边形BEDG,S△BEF+S△DFG=S平行四边形BEDG,S△ABG=S△CDE,根据面积的知差即可求得结论.【详解】(1)①在矩形ABCD中,∠B=∠DCE=90°,BC=AD=5,DC=AB=4,∵DE=5,∴CE==3,∴BE=BC-CE=5-3=2;②在矩形ABCD中,∠DCE=90°,AD//BC,∴∠ADE=∠DEC,∠DCE=∠DFE,∵CE=EF,DE=DE,∴△CED≌△DEF(HL),∴∠CED=∠FED,∴∠ADE=∠AED,∴AD=AE;(2)①当点E在线段BC上时,AF=BF,如图所示:∴∠ABF=∠BAF,∵∠ABF+∠EBF=90°,∠BAF+∠BEF=90°,∴∠EBF=∠BEF,∴EF=BF,∴AF=EF,∵DF⊥AE,∴DE=AD=5,在矩形ABCD中,CD=AB=4,∠DCE=90°,∴CE=3,∴BE=5-3=2;当点E在BC延长线上时,AF=BF,如图所示,同理可证AF=EF,∵DF⊥AE,∴DE=AD=5,在矩形ABCD中,CD=AB=4,∠DCE=90°,∴CE=3,∴BE=5+3=8,综上所述,可知BE=2或8;②S1:S2=1,解答参考如下:当BF//DE时,延长BF交AD于G,在矩形ABCD中,AD//BC,AD=BC,AB=CD,∠BAG=∠DCE=90°,∵BF//DE,∴四边形BEDG是平行四边形,∴BE=DG,S△DEF=S平行四边形BEDG,∴AG=CE,S△BEF+S△DFG=S平行四边形BEDG,∴△ABG≌△CDE,∴S△ABG=S△CDE,∵S△ABE=S平行四边形BEDG,∴S△ABE=S△BEF+S△DFG,∴S△ABF=S△DFG,∴S△ABF+S△AFG=S△DFG+S△AFG即S△ABG=S△ADF,∴S△CDE=S△ADF,即S1:S2=1.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理等,综合性较强,有一定的难度,熟练掌握和灵活用相关知识是解题的关键.21、(1)(2)2-【解析】

(1)根据二次根式的乘除法进行计算即可得到答案;(2)先根据平方差公式和绝对值分别化简,再进行计算即可得到答案.【详解】(1);(2)(1﹣)2﹣|﹣2|=1﹣2+3﹣(2-)=4﹣2﹣2+=2-.【点睛】本题考查二次根式的乘除法、平方差公式和绝对值,解题的关键是掌握二次根式的乘除法、平方差公式和绝对值.22、(1)见解析;(2)53°;(3)【解析】

(1)根据两角对应相等的两个三角形相似即可判断.(2)只要证明△CPQ∽△APC,可得∠PQC=∠ACP即可解决问题.(3)连接AF.与Rt△ADF≌Rt△AQF(HL),推出DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,证明△BCQ∽△CFQ,可得,推出,即,由CF∥AB,可得,推出,可得,推出x2+xy-y2=0,解得x=y或(舍弃),由此即可解决问题.【详解】(1)证明:∵四边形ABCD是矩形,∴∠ABP=90°,∵BQ⊥AP,∴∠BQP=∠ABP=90°,∵∠BPQ=∠APB,∴△ABP∽△BQP.(2)解:∵△ABP∽△BQP,∴∴PB2=PQ•PA,∵PB=PC,∴PC2=PQ•PA,∴∵∠CPQ=∠APC,∴△CPQ∽△APC,∴∠PQC=∠ACP,∵∠BAC=37°,∴∠ACB=90°-37°=53°,∴∠CQP=53°.(3)解:连接AF.∵∠D=∠AQF=90°,AF=AF,AD=AQ,∴Rt△ADF≌Rt△AQF(HL),∴DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,∵∠BCF=∠CQB=∠CQF=90°,∴∠BCQ+∠FCQ=90°,∠CBQ=90°,∴∠FCQ=∠CBQ,∴△BCQ∽△CFQ,∴,∴∴,∵CF∥AB,∴,∴∴∴x2+xy-y2=0,∴x=y或(舍弃),∴∴.故答案为:.【点睛】本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.23、(1)八年级成绩的平均数1.7,七年级成绩的众数为80,八年级成绩的众数为1;(2)八年级团体成绩更好些;(3)七年级实力更强些.【解析】

(1)通过读图即可,即可得知众数,再根据图中数据即可列出求平均数的算式,列式计算即可.(2)根据方差的意义分析即可.(3)分别计算两个年级前两名的总分,得分较高的一个班级实力更强一些.【详解】解:(1)由折线统计图可知:七年级10名选手的成绩分别为:80,87,89,80,88,99,80,77,91,86;八年级10名选手的成绩分别为:1,97,1,87,1,88,77,87,78,88;八年级平均成绩=(1+97+1+87+1+88+77+87+78+88)=1.7(分),七年级成绩中80分出现的次数最多,所以七年级成绩的众数为80;八年级成绩中1分出现的次数最多,所以八年级成绩的众数为1.(2)由于七、八年级比赛成绩的平均数一样,而八年级的方差小于七年级的方差,方差越小,则其稳定性越强,所以应该是八年级团体成绩更好些;(3)七年级前两名总分为:99+91=190(分),八年级前两名总分为:97+88=11(分),因为190分>11分,所以七年级实力更强些.【点睛】本题考查了折线统计图,此题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论