2024届湖北省黄石市八年级数学第二学期期末预测试题含解析_第1页
2024届湖北省黄石市八年级数学第二学期期末预测试题含解析_第2页
2024届湖北省黄石市八年级数学第二学期期末预测试题含解析_第3页
2024届湖北省黄石市八年级数学第二学期期末预测试题含解析_第4页
2024届湖北省黄石市八年级数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省黄石市八年级数学第二学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.使式子有意义的条件是()A.x≥4 B.x=4 C.x≤4 D.x≠42.已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为()A.m<2 B. C. D.m>03.交警在一个路口统计的某个时段来往车辆的分布如条形图所示.请找出这些车辆速度的众数、中位数分别是()A.52,53 B.52,52 C.53,52 D.52,514.下列关于x的方程是一元二次方程的是A. B.C. D.5.下列二次根式中,与是同类二次根式的是()A. B. C. D.6.如图,中,,,要判定四边形是菱形,还需要添加的条件是()A.平分 B. C. D.7.已知一次函数y=(k﹣2)x+k+1的图象不过第三象限,则k的取值范围是()A.k>2 B.k<2 C.﹣1≤k≤2 D.﹣1≤k<28.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m,设甲队每天修路xm.依题意,下面所列方程正确的是A. B. C. D.9.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°10.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.二、填空题(每小题3分,共24分)11.计算:=_________.12.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当C点落在直线y=2x-6上时,线段BC扫过的区域面积为________.13.如果一梯子底端离建筑物9m远,那么15m长的梯子可到达建筑物的高度是____m.14.在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m-4),则OB的最小值是__________.15.如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=_____cm.16.把抛物线沿轴向上平移1个单位,得到的抛物线解析式为______.17.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,若∠ADB=36°,则∠E=_____°.18.如图,在矩形中,,,点,分别在边,上,以线段为折痕,将矩形折叠,使其点与点恰好重合并铺平,则线段_____.三、解答题(共66分)19.(10分)中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号”运行时间.20.(6分)解方程:(1)解分式方程:(2)解一元二次方程x2+8x﹣9=1.21.(6分)已知一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的表达式;(2)将该函数的图像向上平移6个单位长度,求平移后的图像与x轴交点的坐标.22.(8分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C=°,∠D=°(2)在探究等对角四边形性质时:小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立,请你证明该结论;(3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.(4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.23.(8分)计算:24.(8分)如图(甲),在正方形中,是上一点,是延长线上一点,且.(1)求证:;(2)在如图(甲)中,若在上,且,则成立吗?证明你的结论.(3)运用(1)(2)解答中积累的经验和知识,完成下题:如图(乙)四边形中,∥(>),,,点是上一点,且,,求的长.25.(10分)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF,求证:四边形ABCD是平行四边形.26.(10分)如图是两个全等的直角三角形(ΔABC和ΔDEC)摆放成的图形,其中∠ACB=∠DCE=90°,∠A=∠D=30°,点B落在DE边上,AB与CD相交于点F.若BC=4,求这两个直角三角形重叠部分ΔBCF

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据二次根式有意义的条件(大于或等于0)即可求出x的范围.【详解】∵有意义,∴x-4≥0,∴x≥4.故选A.【点睛】考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件(被开方数大于或等于0).2、C【解析】

根据一次函数的性质,当函数值y随自变量x的增大而减小时,那么k<0,由此可得不等式2m﹣1<0,解不等式即可求得m的取值范围.【详解】∵函数值y随自变量x的增大而减小,∴2m﹣1<0,∴m<.故选C.【点睛】本题考查了一次函数的性质,熟练运用一次函数的性质是解决问题的关键.3、B【解析】

根据众数、中位数的意义,分别求出众数、中位数,再做出选择即可.【详解】车速出现次数最多的是52千米/时,因此车速的众数是52,一共调查27辆车,将车速从小到大排列后,处在中间的一个数是52,因此中位数是52,故选:B.【点睛】本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是得出答案的前提.4、C【解析】

只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程一元二次方程有三个特点:只含有一个未知数;未知数的最高次数是2;是整式方程.【详解】A、是一元一次方程,故A不符合题意;B、时是一元一次方程,故B不符合题意;C、是一元二次方程,故C符合题意;D、是二元二次方程,故D不符合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理如果能整理为的形式,则这个方程就为一元二次方程.5、C【解析】

判断是否为同类二次根式必须先化为最简二次根式,若化为最简二次根式后,被开方数相同则为同类二次根式.【详解】解:A、,与不是同类二次根式;

B、,与不是同类二次根式;

C、,与是同类二次根式;

D、,与不是同类二次根式;

故选C.【点睛】主要考查如何判断同类二次根式,需注意的是必需先化为最简二次根式再进行判断.6、A【解析】

当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.【详解】解:当平分时,四边形是菱形,理由:∵,∴,∵,∴,∴,∵,,∴四边形是平行四边形,∵,∴四边形是菱形.其余选项均无法判断四边形是菱形,故选:A.【点睛】本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7、D【解析】

若函数y=kx+b的图象不过第三象限,则此函数的k<1,b≥1,据此求解.【详解】解:∵一次函数y=(k﹣2)x+k+1的图象不过第三象限,∴k﹣2<1,k+1≥1解得:﹣1≤k<2,故选:D.【点睛】本题考查一次函数的图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数是大于1或是小于1.8、A【解析】

甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,.故选A.9、B【解析】

先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.10、B【解析】

由题意可知,当时,;当时,;当时,.∵时,;时,.∴结合函数解析式,可知选项B正确.【点睛】考点:1.动点问题的函数图象;2.三角形的面积.二、填空题(每小题3分,共24分)11、【解析】

先利用二次根式的性质,再判断的大小去绝对值即可.【详解】因为,所以故答案为:【点睛】此题考查的是二次根式的性质和去绝对值.12、5【解析】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=1.∵∠CAB=90°,BC=3,∴AC=4,∴A′C′=4.∵点C′在直线y=4x﹣6上,∴4x﹣6=4,解得x=3.即OA′=3,∴CC′=3﹣1=4,∴S▱BCC′B′=4×4=5(cm4).即线段BC扫过的面积为5cm4.故答案为5.13、12【解析】∵直角三角形的斜边长为15m,一直角边长为9m,

∴另一直角边长=,故梯子可到达建筑物的高度是12m.故答案是:12m.14、【解析】

利用勾股定理可用m表示出OB的长,根据平方的非负数性质即可得答案.【详解】∵点B的坐标是(m,m-4),∴OB==,∵(m-2)2≥0,∴2(m-2)2+8≥8,∴的最小值为=,即OB的最小值为,故答案为:【点睛】本题考查勾股定理的应用及平方的非负数性质,熟练掌握平方的非负数性质是解题关键.15、1【解析】

根据题意先利用垂直平分线的性质得出AF=EF,∠AFG=∠EFD=90°,DA=DE,再证明△DEF≌△GAF(ASA),从而得DE=AG,然后利用一组对边平行且相等的四边形为平行四边形证明四边形DAGE为平行四边形,之后利用一组邻边相等的四边形为菱形证明DAGE为菱形,从而可得AG=AB,最后将已知线段长代入即可得出答案.【详解】解:∵AE的垂直平分线为DG∴AF=EF,∠AFG=∠EFD=90°,DA=DE∵四边形ABCD是平行四边形∴DC∥AB,AD∥BC,DC=AB,∴∠DEA=∠BAE∵AE平分∠BAD交CD于点E∴∠DAE=∠BAE∴在△DEF和△GAF中∴△DEF≌△GAF(ASA)∴DE=AG又∵DE∥AG∴四边形DAGE为平行四边形又∵DA=DE∴四边形DAGE为菱形.∴AG=AD∵AD=4cm∴AG=4cm∵BG=1cm∴AB=AG+BG=4+1=1(cm)故答案为:1.【点睛】本题考查平行四边形的判定与性质及菱形的判定与性质,熟练掌握相关性质及定理是解题的关键.16、【解析】

抛物线图像向上平移一个单位,即纵坐标减1,然后整理即可完成解答.【详解】解:由题意得:,即【点睛】本题主要考查了函数图像的平移规律,即“左右横,上下纵,正减负加”的理解和应用是解题的关键.17、18【解析】

连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=36°,可得∠E度数.【详解】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=36°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=36°,∴∠E=18°.故答案为:18【点睛】考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.18、3.1【解析】

根据折叠的特点得到,,可设,在Rt△AGE中,利用得到方程即可求出x.【详解】解∵折叠,∴,.设,∴.在中,,∴,解得.故答案为:3.1.【点睛】此题主要考查矩形的折叠问题,解题的关键是熟知矩形的性质及勾股定理的应用.三、解答题(共66分)19、4小时.【解析】

设复兴号用时x小时,根据“复兴号”较“和谐号”速度增加每小时70公里,列出方程即可.【详解】解:设复兴号用时x小时,则和谐号用时(x+1)小时,根据题意得:1400x=70+1400解得:x=4或x=-5(舍去),答:上海火车站到北京火车站的“复兴号”运行时间为4小时.故答案为:4小时.【点睛】本题考查了分式方程的应用.20、(1)x=3;(2)1或-9.【解析】(1)按照解分式方程的一般步骤进行解答即可;(2)根据本题特点,用“因式分解法”进行解答即可.详解:(1)解分式方程:去分母得:,移项得:,合并同类项得:,系数化为1得:,检验:当时,,∴原方程的解是:;(2)解一元二次方程x2+8x﹣9=1,原方程可化为:,∴或,解得:.点睛:(1)解答第1小题的关键是:①熟知解分式方程的基本思路是:去分母,化分式方程为整式方程;②知道解分式方程,当求得未知数的值后,需检验所得结果是否是原方程的根,再作结论;(2)解第2小题的关键是能够通过因式分解把原方程化为:的形式.21、(1)y=x-4.(2)(-4,0).【解析】

(1)把点(2,-3)代入解析式即可求出k;(2)先得出函数图像向上平移6单位的函数关系式,再令y=0,即可求出与x轴交点的坐标.【详解】解:(1)将x=2,y=-3代入y=kx-4,得-3=2k-4.∴k=.∴一次函数的表达式为y=x-4.(2)将y=x-4的图像向上平移6个单位长度得y=x+2.当y=0时,x=-4.∴平移后的图像与x轴交点的坐标为(-4,0).【点睛】此题主要考察一次函数的解析式的求法与在坐标轴方向上的平移.22、(1)140°,1°;(2)证明见解析;(3)见解析;(4)2或2.【解析】试题分析:(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=1°,根据多边形内角和定理求出∠C即可;

(2)连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;

(3)根据等对角四边形的定义画出图形即可求解;

(4)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;

②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.试题解析:(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=1°,∴∠D=∠B=1°,∴∠C=360°﹣1°﹣1°﹣70°=140°;(2)证明:如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;(3)如图所示:(4)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC=;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2,∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC=.综上所述:AC的长为或.故答案为:140,1.【点睛】四边形综合题目:考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(4)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.23、【解析】

先化简和,再计算二次根式的除法和乘法,最后进行加减运算即可得解.【详解】,==.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算顺序和运算法则是解决此题的关键.24、(1)见解析;(1)成立,理由见解析;(3)5【解析】分析:(1)因为ABCD为正方形,所以CB=CD,∠B=∠CDA=90°,又因为DF=BE,则△BCE≌△DCF,即可求证CE=CF;(1)因为∠BCD=90°,∠GCE=45°,则有∠BCE+∠GCD=45°,又因为△BCE≌△DCF,所以∠ECG=∠FCG,CE=CF,CG=CG,则△ECG≌△FCG,故GE=BE+GD成立;(3)①过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.详解:(1)在正方形ABCD中CB=CD,∠B=∠CDA=90°,∴∠CDF=∠B=90°.在△BCE和△DCF中,∴△BCE≌△DCF(SAS).∴CE=CF.(1)GE=BE+GD成立.理由如下:∵∠BCD=90°,∠GCE=45°,∴∠BCE+∠GCD=45°.∵△BCE≌△DCF(已证),∴∠BCE=∠DCF.∴∠GCF=∠GCD+∠DCF=∠GC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论