版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉江岸区七校联考2024年八年级数学第二学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.D、E是△ABC的边AB、AC的中点,△ABC、△ADE的面积分别为S、S1,则下列结论中,错误的是()A.DE∥BC B.DE=BC C.S1=S D.S1=S2.方程x(x﹣1)=x的解是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=23.一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A.4 B.6 C.8 D.104.若,则=()A. B. C. D.无法确定5.如图,在中,,,平分交于点,于点,下列结论:①;②;③;④点在线段的垂直平分线上,其中正确的个数有()A.4个 B.3个 C.2个 D.1个6.如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的相邻两边DC和DE的长分别是5,1.则EB的长是()A.0.5 B.1 C.1.5 D.27.下面哪个点在函数y=2x-1的图象上()A.(-2.5,-4) B.(1,3) C.(2.5,4) D.(0,1)8.如图,在ΔABC中,AB=3,BC=2,D、E、F分别为AB、BC、AC的中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.119.如图,平行四边形ABCD中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接BD,将△BCD绕点B旋转,当BD(即BD′)与AD交于一点E,BC(即BC′)同时与CD交于一点F时,下列结论正确的是()①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF的周长的最小值是4+2A.①② B.②③ C.①②④ D.①②③④10.数据1、2、5、3、5、3、3的中位数是()A.1 B.2 C.3 D.511.甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么()A.甲的波动比乙的波动大 B.乙的波动比甲的波动大C.甲,乙的波动大小一样 D.甲,乙的波动大小无法确定12.在ABCD中,∠A=40°,则∠C=()A.40° B.50° C.130° D.140°二、填空题(每题4分,共24分)13.如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____14.在矩形中,,点是的中点,将沿折叠后得到,点的对应点为点.(1)若点恰好落在边上,则______,(2)延长交直线于点,已知,则______.15.如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD=,AE=3,则AC=_____.16.如图,将三角形纸片的一角折叠,使点B落在AC边上的F处,折痕为DE.已知AB=AC=3,BC=4,若以点E,F,C为顶点的三角形与△ABC相似,那么BE的长是_______.17.若一个三角形的三边的比为3:4:5,则这个三角形的三边上的高之比为__________.18.如图,▱ABCD的对角线AC,BD相交于点O,且AC=4,BD=7,CD=3,则△ABO周长是__.三、解答题(共78分)19.(8分)如图,城有肥料吨,城有肥料吨,现要把这些肥料全部运往、两乡、从城往、两乡运肥料的费用分别是元/吨和元/吨;从城往、两多运肥料的费用分别是元/吨和元/吨,现乡需要肥料吨,乡需要肥料吨,怎样调运可使总运费最少?20.(8分)如图是由25个边长为1的小正方形组成的网格,请在图中画出以为斜边的2个面积不同的直角三角形.(要求:所画三角形顶点都在格点上)21.(8分)计算:(1);(2)先化简,再求值,;其中,x2,y2.22.(10分)先化简,再求值:(+)÷,其中x=﹣1.23.(10分)近年来,萧山区大力发展旅游业,跨湖桥遗址、湘湖二期三期、宋城千古情、河上民俗、大美进化……这些名词,相信同学们都耳熟能详了,因此近年来,我区的年游客接待量呈逐年稳步上升,2015年接待1800万人次,2015——2017年这三年累计接待游客高达5958万人次.(1)求萧山区2015——2017年年游客接待量的年平均增长率.(2)若继续呈该趋势增长,请预测2018年年游客接待量(近似到万人次).24.(10分)E、F、M、N分别是正方形ABCD四条边上的点,AE=BF=CM=DN,四边形EFMN是什么图形?证明你的结论.25.(12分)如图,矩形的顶点分别在轴的正半轴上,点在反比例函数的第一象限内的图像上,,动点在轴的上方,且满足.(1)若点在这个反比例函数的图像上,求点的坐标;(2)连接,求的最小值;(3)若点是平面内一点,使得以为顶点的四边形是菱形,则请你直接写出满足条件的所有点的坐标.26.解下列不等式(组),并将其解集分别表示在数轴上.(1);(2)
参考答案一、选择题(每题4分,共48分)1、D【解析】
由D、E是△ABC的边AB、AC的中点得出DE是△ABC的中位线,得出DE∥BC,DE=BC,易证△ADE∽△ABC得出,即可得出结果.【详解】∵D、E是△ABC的边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∵DE∥BC,∠A=∠A,∴△ADE∽△ABC,∴,即S1=S,∴D错误,故选:D.【点睛】考查了相似三角形的判定与性质、三角形中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.2、D【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x(x−1)=x,x(x−1)−x=0,x(x−1−1)=0,x=0,x−1−1=0,x1=0,x1=1.故选:D.【点睛】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.3、C【解析】因为多边形的外角和为360°,所以这个多边形的边数为:360÷45=8,故选C.4、B【解析】
设比值为,然后用表示出、、,再代入算式进行计算即可求解.【详解】设,则,,,.故选:.【点睛】本题考查了比例的性质,利用设“”法表示出、、是解题的关键,设“”法是中学阶段常用的方法之一,需熟练掌握并灵活运用.5、A【解析】
首先求出∠C=30°,∠ABC=60°,再根据角平分线的定义,直角三角形30°角的性质,线段的垂直平分线的定义一一判断即可.【详解】∵在△ABC中,∠BAC=90°,∠ABC=2∠C,∴∠C=30°,∠ABC=60°,∵BE平分∠ABC,∴∠ABE=∠EBC=30°,∴∠EBC=∠C,∴EB=EC,∴AC-BE=AC-EC=AE,故①正确,∵EB=EC,∴点E在线段BC的垂直平分线上,故④正确,∵AD⊥BE,∴∠BAD=60°,∵∠BAE=90°,∴∠EAD=30°,∴∠EAD=∠C,故②正确,∵∠ABD=30°,∠ADB=90°,∴AB=2AD,∵∠BAC=90°,∠C=30°,∴BC=2AB=4AD,故③正确,故选A.【点睛】本题考查角平分线的性质,线段的垂直平分线的定义,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识.6、B【解析】
直接利用菱形的性质得出AD的长,再利用勾股定理得出AE的长,进而利用平移的性质得出答案.【详解】解:∵有一块菱形纸片ABCD,DC=5,∴AD=BC=5,∵DE=2,∠DEA=90°,∴AE=4,则BE=5﹣4=2.故选:B.【点睛】此题主要考查了图形的剪拼以及菱形的性质,正确得出AE的长是解题关键.7、C【解析】
将点的坐标逐个代入函数解析式中,若等号两边相等则点在函数上,否则就不在.【详解】解:将x=-2.5,y=-4代入函数解析式中,等号左边-4,等号右边-6,故选项A错误;将x=1,y=3代入函数解析式中,等号左边3,等号右边1,故选项B错误;将x=2.5,y=4代入函数解析式中,等号左边4,等号右边4,故选项C正确;将x=0,y=1代入函数解析式中,等号左边1,等号右边-1,故选项D错误;故选:C.【点睛】本题考查了一次函数图像上点的坐标特征,一次函数y=kx+b,(k≠0,且k,b为常数)的图像是一条直线.直线上任意一点的坐标都满足函数关系式y=kx+b.8、A【解析】
先根据三角形中位线性质得DF=12BC=1,DF∥BC,EF=12AB=32,EF∥AB【详解】解:∵D、E、F分别为AB、BC、AC中点,
∴DF=12BC=1,DF∥BC,EF=12AB=32,EF∥AB,
∴四边形DBEF为平行四边形,
∴四边形DBEF的周长=2(DF+EF)=2×(1+32)=1.【点睛】本题考查三角形中位线定理和四边形的周长,解题的关键是掌握三角形中位线定理.9、C【解析】
根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.【详解】∵AB=BC=CD=AD=4,∠A=∠C=60°,∴△ABD,△BCD为等边三角形,∴∠A=∠BDC=60°.∵将△BCD绕点B旋转到△BC'D'位置,∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',∴△ABE≌△BFD,∴AE=DF,BE=BF,∠AEB=∠BFD,∴∠BED+∠BFD=180°.故①正确,③错误;∵∠ABD=60°,∠ABE=∠DBF,∴∠EBF=60°.故②正确;∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,∴当EF最小时.∵△DEF的周长最小.∵∠EBF=60°,BE=BF,∴△BEF是等边三角形,∴EF=BE,∴当BE⊥AD时,BE长度最小,即EF长度最小.∵AB=4,∠A=60°,BE⊥AD,∴EB=2,∴△DEF的周长最小值为4+2.故④正确.故选C.【点睛】本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.10、C【解析】试题分析:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为1,2,1,1,1,5,5,∴中位数是按从小到大排列后第4个数为:1.故选C.11、A【解析】
根据方差的定义,方差越小数据越稳定,故可选出正确选项.【详解】解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.故选A.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、A【解析】因为平行四边形的对角相等,所以∠A=∠C=40°,故选A二、填空题(每题4分,共24分)13、4【解析】
根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得出四边形DBEC是菱形,由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【详解】∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC,∴BC=1DF=1.又∵∠ABC=90°,∴AB==.∵平行四边形DBEC是菱形,∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4,故答案为4.【点睛】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题.14、6或【解析】
(1)由矩形的性质得出,,由折叠的性质得出,由平行线的性质得出,推出,得出,即可得出结果;(2)①当点在矩形内时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,,,由勾股定理即可求出;②当点在矩形外时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,由勾股定理得出:,即,即可求出.【详解】解:(1)四边形是矩形,,,由折叠的性质可知,,如图1所示:,,,,是的中点,,,(2)①当点在矩形内时,连接,如图2所示:由折叠的性质可知,,,,四边形是矩形,是的中点,,,,在和中,,,,,,,,;②当点在矩形外时,连接,如图3所示:由折叠的性质可知,,,,四边形是矩形,是的中点,,,,在和中,,,,,,,即:,,解得:,(不合题意舍去),综上所述,或,故答案为(1)6;(2)或.【点睛】本题考查了折叠的性质、矩形的性质、平行线的性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握折叠的性质、证明三角形全等并运用勾股定理得出方程是解题的关键.15、【解析】
由等腰三角形的性质可得AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°,可证△ADC≌△BEC,可得AD=BE=,∠D=∠BEC=45°,由勾股定理可求AB=2,即可求AC的长。【详解】证明:如图,连接BE,
∵△ACB和△DCE都是等腰直角三角形
∴AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°
∴∠DCA=∠BCE,且AC=BC,DC=EC,
∴△ADC≌△BEC(SAS)
∴AD=BE=,∠D=∠BEC=45°,
∴∠AEB=90°
∴AB==2
∵AB=BC
∴BC=,因为△ACB是等腰直角三角形,所以BC=AC=.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质,解题的关键是掌握等腰直角三角形的性质、全等三角形的判定和性质.16、或1.【解析】
由于折叠前后的图形不变,要考虑△B′FC与△ABC相似时的对应情况,分两种情况讨论.【详解】解:根据△B′FC与△ABC相似时的对应关系,有两种情况:①△B′FC∽△ABC时,,又∵AB=AC=3,BC=4,B′F=BF,∴,解得BF=;②△B′CF∽△BCA时,,AB=AC=3,BC=4,B′F=CF,BF=B′F,而BF+FC=4,即1BF=4,解得BF=1.故BF的长度是或1.故答案为:或1.【点睛】本题考查相似三角形的性质.17、20:15:1.【解析】
根据勾股定理的逆定理得到这个三角形是直角三角形,根据三角形的面积公式求出斜边上的高,然后计算即可.【详解】解:设三角形的三边分别为3x、4x、5x,∵(3x)2+(4x)2=25x2=(5x)2,∴这个三角形是直角三角形,设斜边上的高为h,则×3x×4x=×5x×h,解得,h=,则这个三角形的三边上的高之比=4x:3x:=20:15:1,故答案为:20:15:1.【点睛】本题考查的是勾股定理的逆定理、三角形的面积计算,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.18、8.1.【解析】
直接利用平行四边形的性质得出AO=CO=2,BO=DO=,DC=AB=3,进而得出答案.【详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AB=CD=3,∵AC=4,BD=7,∴AO=2,OB=,∴△ABO的周长=AO+OB+AB=2++3=8.1.故答案为:8.1.【点睛】此题主要考查了平行四边形的性质以及三角形周长的计算,正确得出AO+BO的值是解题关键.三、解答题(共78分)19、从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往的D乡60吨,此时总运费最少,总运费最小值是10040元.【解析】
设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和吨,然后根据总运费和运输量的关系列出方程式,最后根据x的取值范围求出y的最小值.【详解】解:设总运费为元,城运往乡的肥料量为吨,则运往乡的肥料量为吨;城运往、乡的肥料量分别为吨和吨.由总运费与各运输量的关系可知,反映与之间的函数关系为.化简得,随的增大而增大,∴当时,的最小值.因此,从城运往乡吨,运往乡吨;从城运往乡吨,运往乡吨,此时总运费最少,总运费最小值是元.故答案为:从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往的D乡60吨,此时总运费最少,总运费最小值是10040元.【点睛】本题考查一次函数的应用,一次函数的性质的运用.解答时求出一次函数的解析式是关键.20、见解析【解析】
根据勾股定理逆定理,结合网格结构,作出一个直角边分别为2,4的直角三角形或者作出一个直角边都为的直角三角形即可【详解】【点睛】考查勾股定理,在直角三角形中,两条直角边的平方和等于斜边的平方.21、(1);(2)2.【解析】
(1)根据二次根式和零指数幂进行化简,再进行加减运算即可得到答案;(2)先根据平方差公式对进行化简,再代入x2,y2,计算即可得到答案.【详解】(1)===(2)===将x2,y2代入得到=2.【点睛】本题考查平方差公式、二次根式和零指数幂,解题的关键是掌握平方差公式、二次根式和零指数幂.22、-5.【解析】
括号内先通分进行分式加减法运算,然后再进行分式除法运算,化简后把x的值代入计算即可得.【详解】(+)÷===,当x=-1时,原式=-2-3=-5.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.23、(1)年平均增长率为10%;(2).【解析】
设萧山区从2015——2017年年游客接待量的年平均增长率为x,根据这三年累计接待游客高达5958万人次即可得出关于x的一元二次方程,解出取其正值即可得出结论;(2)运用(1)的结论进行预测即可.【详解】(1)解:设年平均增长率为x得:由题意得:x>0,∴(舍去)即年平均增长率为10%(2)∴若继续呈该趋势增长,预测2018年年游客接待量约为2396万人次.【点睛】本题考查了一元二次方程的应用,解题珠关键是找准等量关系,正确列出一元二次方程.24、四边形EFMN是正方形.【解析】
是正方形.可通过证明△AEN≌△DNM≌△CMF≌△BFE,先得出四边形EFMN是菱形,再证明四边形EFMN中一个内角为90°,从而得出四边形EFMN是正方形的结论.【详解】解:四边形EFMN是正方形.证明:∵AE=BF=CM=DN,∴AN=DM=CF=BE.∵∠A=∠B=∠C=∠D=90°,∴△AEN≌△DNM≌△CMF≌△BFE.∴EF=EN=NM=MF,∠ENA=∠DMN.∴四边形EFMN是菱形.∵∠ENA=∠DMN,∠DMN+∠DNM=90°,∴∠ENA+∠DNM=90°.∴∠ENM=90°.∴四边形EFMN是正方形.【点睛】本题主要考查了正方形的性质和判定,灵活运用性质定理进行推理是解题关键.25、(1)点P的坐标为(6,2);(2);(3)Q(4−,5),Q(4+,5),Q(4−2,−1),Q(4+2,−1).【解析】
(1)首先根据点B坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《篇综合分析评价》课件
- 外阴白斑护理讲课
- 《卵巢保健》课件
- 《压型钢板设计》课件
- 周围血管疾病病人护理
- 电工家电维修课程设计
- 《复制记账原理》课件
- 电子银行促销策略研究报告
- 电子贺卡单片机课程设计
- 电子稳像课程设计
- 《江城子·乙卯正月二十日夜记梦》课件 -2024-2025学年统编版高中语文选择性必修上册
- 新员工岗前安全培训考试题含完整答案【各地真题】
- 第四届“长城杯”网络安全大赛(高校组)初赛备赛试题库-上(单选题部分)
- 国开2024年秋季《形势与政策》大作业答案
- 2024年浙江省初中学业水平考试数学试题(潮汐卷)(解析版)
- 中职教育一年级上学期英语《We Are Friends》课件
- 专题10 议论文阅读(含答案) 2024年中考语文【热点-重点-难点】专练(上海专用)
- 21 小圣施威降大圣 公开课一等奖创新教案
- 新概念第四册课文翻译及学习笔记:Lesson5
- 业绩对赌协议范文(2024版)
- 宠物医院服务行业市场调研分析报告
评论
0/150
提交评论