2024年北京市昌平区昌平区第二中学八年级下册数学期末联考试题含解析_第1页
2024年北京市昌平区昌平区第二中学八年级下册数学期末联考试题含解析_第2页
2024年北京市昌平区昌平区第二中学八年级下册数学期末联考试题含解析_第3页
2024年北京市昌平区昌平区第二中学八年级下册数学期末联考试题含解析_第4页
2024年北京市昌平区昌平区第二中学八年级下册数学期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年北京市昌平区昌平区第二中学八年级下册数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. B. C. D.2.如图,在△ABC中,∠ACB=90°,分别以AB、BC、AC为底边在△ABC外部画等腰直角三角形,三个等腰直角三角形的面积分别是S1、S2、S3,则S1、S2、S3之间的关系是()A. B. C. D.3.如图,正方形的边长为10,,,连接,则线段的长为()A. B. C. D.4.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6 B.n=7C.n=8 D.n=95.下列各式中,不是最简二次根式的是()A. B. C. D.6.若,若,则的度数是()A. B. C. D.7.如图,点O在ABC内,且到三边的距离相等,若∠A=60°,则∠BOC的大小为()A.135° B.120° C.90° D.60°8.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4) B.(3,4) C.(-4,-3) D.(4,3)9.代数式2x,,x+,中分式有()A.1个 B.2个 C.3个 D.4个10.道路千万条,安全第一条,下列交通标志是中心对称图形的为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知中,,角平分线BE、CF交于点O,则______.12.一次函数中,当时,<1;当时,>0则的取值范围是.13.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为15cm,那么△ABC的周长是_________cm.14.如图,点D是等边内部一点,,,.则的度数为=________°.15.化简:=_______.16.当__________时,代数式取得最小值.17.统计学校排球队队员的年龄,发现有岁、岁、岁、岁等四种年龄,统计结果如下表,则根据表中信息可以判断表中信息可以判断该排球队队员的平均年龄是__________岁.年龄/岁人数/个18.“同位角相等”的逆命题是__________________________.三、解答题(共66分)19.(10分)解不等式组:,并将不等式组的解集在所给数轴上表示出来.20.(6分)如图,一次函数与反比例函数的图象交于,两点(1)求一次函数的解析式;(2)根据图象直接写出关于的不等式的解集;(3)求的面积.21.(6分)计算:.22.(8分)一个四位数,记千位上和百位上的数字之和为,十位上和个位上的数字之和为,如果,那么称这个四位数为“和平数”.例如:1423,,,因为,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;23.(8分)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.24.(8分)如图,在中,点D、E分别是边BC、AC的中点,过点A作交DE的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当满足什么条件时,四边形图ADCF是菱形?为什么?25.(10分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x;y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?26.(10分)如图,ABCD中,的角平分线交AD于点E,的角平分线交于点,,,=50°.(1)求的度数;(2)求ABCD的周长.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据等边三角形的性质和平移的性质即可得到结论.【详解】解:∵△OAB是等边三角形,∵B的坐标为(2,0),∴A(1,),∵将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,∴A′的坐标(4,),故选:D.【点睛】本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.2、B【解析】

根据勾股定理可得AB2=AC2+BC2,再根据等腰直角三角形的性质和三角形的面积公式计算,即可得到答案.【详解】解:如图,在Rt△ABC中,由勾股定理,得:AB2=AC2+BC2,∵△ABF、△BEC、△ADC都是等腰直角三角形,∴S1=AF2=AB2,S2=EC2=BC2,S3=AD2=AC2,∴S2+S3=BC2+AC2=(BC2+AC2)=AB2,∴S2+S3=S1.故选:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理以及三角形的面积等知识,属于基本题型,熟练掌握勾股定理和等腰直角三角形的性质是解题关键.3、B【解析】

延长DH交AG于点E,利用SSS证出△AGB≌△CHD,然后利用ASA证出△ADE≌△DCH,根据全等三角形的性质求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【详解】解:延长DH交AG于点E∵四边形ABCD为正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD为直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故选B.【点睛】此题考查是正方形的性质、全等三角形的判定及性质和勾股定理,掌握正方形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.4、C【解析】

根据n边形的内角和等于外角和的3倍,可得方程180(n-2)=360×3,再解方程即可.【详解】解:由题意得:180(n-2)=360×3,

解得:n=8,

故选:C.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.5、A【解析】

根据最简二次根式的定义即可判断.【详解】解:A、=,故不是最简二次根式;B、是最简二次根式;C、是最简二次根式;D、是最简二次根式.故本题选择A.【点睛】掌握判断最简二次根式的依据是解本题的关键.6、A【解析】

根据相似三角形的对应角相等可得∠D=∠A.【详解】∵△ABC∽△DEF,∠A=50°,

∴∠D=∠A=50°.

故选:A.【点睛】此题考查相似三角形的性质,熟记相似三角形的对应角相等是解题的关键.7、B【解析】

由条件可知O为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A),在△BOC中利用三角形的内角和定理可求得∠BOC.【详解】∵O到三边的距离相等∴BO平分∠ABC,CO平分∠ACB∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°−∠A)∵∠A=60°∴∠OBC+∠OCB=60°∴∠BOC=180°−(∠OBC+∠OCB)=180°−60°=120°故选B.【点睛】本题考查了角平分线的性质,熟练掌握角平分线把一个角分成两个相等的角是解题的关键.8、C【解析】

根据点P所在象限先确定P点横纵坐标都是负数,根据P到x轴和y轴的距离确定点的坐标.【详解】解:∵点P(x,y)在第三象限,

∴P点横纵坐标都是负数,

∵P到x轴和y轴的距离分别为3、4,

∴点P的坐标为(-4,-3).

故选:C.【点睛】此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y轴的距离=横坐标的绝对值.9、A【解析】

直接利用分式的定义分析得出答案.【详解】解:代数式2x,,x+,中分式有:.

故选A.【点睛】本题考查了分式的定义,正确把握定义是解题关键.10、B【解析】

结合中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,本选项错误;

B、是中心对称图形,本选项正确;

C、不是中心对称图形,本选项错误;

D、不是中心对称图形,本选项错误.

故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、【解析】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.12、.【解析】根据题意,得.13、1【解析】

根据DE是AC的垂直平分线以及AE=3cm,即可得出DA=DC且AC=6cm,再根据△ABD的周长和△ABC的周长之间的关系即可得出C△ABC的值.【详解】解:∵DE是AC的垂直平分线,AE=3cm,

∴AC=2AE=6cm,DA=DC.

∵C△ABD=AB+BD+DA,C△ABC=AB+BD+DC+CA=AB+BD+DA+CA=C△ABD+CA,且C△ABD=10cm,

∴C△ABC=15+6=1cm.

故答案为:1.【点睛】本题考查了线段垂直平分线的性质以及三角形的周长,解题的关键是找出△ABD的周长和△ABC的周长之间的关系.本题属于基础题,难道不大,解决该题型题目时,根据线段垂直平分线的性质找出相等的线段是关键.14、1【解析】

将△BCD绕点B逆时针旋转60°得到△ABD',根据已知条件可以得到△BDD'是等边三角形,△ADD'是直角三角形,即可求解.【详解】将△BCD绕点B逆时针旋转60°得到△ABD',∴BD=BD',AD'=CD,∴∠DBD'=60°,∴△BDD'是等边三角形,∴∠BDD'=60°,∵BD=1,DC=2,AD=,∴DD'=1,AD'=2,在△ADD'中,AD'2=AD2+DD'2,∴∠ADD'=90°,∴∠ADB=60°+90°=1°,故答案为1.【点睛】本题考查旋转的性质,等边三角形和直角三角形的性质;能够通过图形的旋转构造等边三角形和直角三角形是解题的关键.15、【解析】

直接利用二次根式的性质化简得出答案.【详解】解:原式=.故答案为:.【点睛】此题主要考查了实数运算,正确掌握二次根式的性质是解题关键.16、【解析】

运用配方法变形x2-2x+3=(x-1)2+2;得出(x-1)2+2最小时,即(x-1)2=0,然后得出答案.【详解】∵x2-2x+3=x2-2x+1+2=(x-1)2+2,∴当x-1=0时,(x-1)2+2最小,∴x=1时,代数式x2-2x+3有最小值.故答案为:1.【点睛】此题主要考查了配方法的应用,非负数的性质,得出(x-1)2+2最小时,即(x-1)2=0,这是解决问题的关键.17、【解析】

计算出学校排球队队员的总年龄再除以总人数即可.【详解】解:(岁)所以该排球队队员的平均年龄是14岁.故答案为:14【点睛】本题考查了平均数,掌握求平均数的方法是解题的关键.18、如果两个角相等,那么这两个角是同位角.【解析】因为“同位角相等”的题设是“两个角是同位角”,结论是“这两个角相等”,所以命题“同位角相等”的逆命题是“相等的两个角是同位角”.三、解答题(共66分)19、,见解析【解析】

求出每个不等式的解集,根据找不等式组解集的规律找出即可.【详解】解:∵解不等式①得:x≤4,

解不等式②得:x<2,

∴原不等式组的解集为x<2,

不等式组的解集在数轴上表示如下:

.【点睛】此题考查解一元一次不等式组,在数轴上表示不等式组的解集,解题关键是能根据不等式得解集找出不等式组的解集.20、(1);(2)或(3).【解析】

(1)把A和B代入反比例函数解析式即可求得坐标,然后用待定系数法求得一次函数的解析式;(2)不等式的解集就是:对于相同的x的值,反比例函数的图象在上边的部分自变量的取值范围;(3)根据三角形的面积公式即可得到结论.【详解】(1)把,代入中,得,∴,的坐标分别为,把,代入中,得解得∴一次函数的表达式为(2)根据图象得,不等式的解集为:或时.(3)设一次函数与轴相交于点,当时,∴点的坐标为∴【点睛】本题综合考查一次函数与反比例函数的图象与性质,同时考查用待定系数法求函数解析式.本题需要注意无论是自变量的取值范围还是函数值的取值范围,都应该从交点入手思考;需注意反比例函数的自变量不能取1.21、【解析】

根据分式的基本运算法则,先算括号内,再算除法.【详解】试题分析:解:【点睛】考点:实数的运算;本题属于基础应用题,只需学生熟练掌握实数的基本运算规则,即可完成.22、(1)1001,9999;(2)见详解;(3)2754和1【解析】

(1)根据和平数的定义,即可得到结论;(2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.(3)设这个“和平数”为,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则=1100(a+b)+11(c+d)=1111(a+b);即两个“相关和平数”之和是1111的倍数.(3)设这个“和平数”为,则d=2a,a+b=c+d,b+c=12k,∴2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①当a=2,d=4时,2(c+1)=12k,可知c+1=6k且a+b=c+d,∴c=5则b=7,②当a=4,d=8时,2(c+2)=12k,可知c+2=6k且a+b=c+d,∴c=4则b=8,综上所述,这个数为:2754和1.【点睛】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.23、详见解析.【解析】

(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得∴△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.24、(1)见解析;(2)当△ABC是直角三角形,且∠BAC=90°时,四边形ADCF是菱形,理由见解析.【解析】

(1)首先利用平行四边形的判定方法得出四边形ABDF是平行四边形,进而得出AF=DC,利用一组对边相等且平行的四边形是平行四边形,进而得出答案;

(2)利用直角三角形的性质结合菱形的判定方法得出即可.【详解】(1)证明:∵点D、E分别是边BC、AC的中点,

∴DE∥AB,BD=CD,

∵AF∥BC,

∴四边形ABDF是平行四边形,

∴AF=BD,则AF=DC,

∵AF∥BC,

∴四边形ADCF是平行四边形;

(2)解:当△ABC是直角三角形,且∠BAC=90°时,四边形ADCF是菱形,

理由:∵△ABC是直角三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论