版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年重庆市涪陵区第十九中学八年级数学第二学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,函数和的图象相交于A(m,3),则不等式的解集为()A. B. C. D.2.直线y=3x-1与y=x+3的交点坐标是()A.(2,5) B.(1,4) C.(-2,1) D.(-3,0)3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.3环,方差分别为S甲2=0.1.S乙2=0.62,S丙2=0.50,S丁2=0.45,则成绩最稳定的是()A.甲 B.乙 C.丙 D.丁4.已知点(-1,y1),(1,y2),(-2,y3)都在直线y=-x上,则y1,y2,y3的大小关系是()A..y1>y2>y3 B.y1<y2<y3 C.y3>y1>y2 D.y3<y1<y25.位参加歌唱比赛的同学的成绩各不相同,按成绩取前位进入决赛。如果小尹知道了自己的成绩后,要判断自己能否进入决赛,他还要知道这位同学成绩的()A.平均数 B.众数 C.方差 D.中位数6.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是()A. B. C. D.7.在菱形中,,点为边的中点,点与点关于对称,连接、、,下列结论:①;②;③;④,其中正确的是()A.①② B.①②③ C.①②④ D.①②③④8.施工队要铺设米的下水管道,因在中考期间需停工天,每天要比原计划多施工米才能按时完成任务.设原计划每天施工米,所列方程正确的是()A. B.C. D.9.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A. B.C. D.二、填空题(每小题3分,共24分)11.点A为数轴上表示实数的点,将点A沿数轴平移3个单位得到点B,则点B表示的实数是________.12.如图,已知直线y=x与反比例函数y=的图象交于A,B两点,且点A的横坐标为.在坐标轴上找一点C,直线AB上找一点D,在双曲线y=找一点E,若以O,C,D,E为顶点的四边形是有一组对角为60∘的菱形,那么符合条件点D的坐标为___.13.样本-3、9、-2、4、1、5、的中位数是_____.14.将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是_____.15.如图,在平面直角坐标系中,点A为,点C是第一象限上一点,以OA,OC为邻边作▱OABC,反比例函数的图象经过点C和AB的中点D,反比例函数图象经过点B,则的值为______.16.关于x的方程有解,则k的范围是______.17.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=_____cm.18.若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=______.三、解答题(共66分)19.(10分)如图,直线l1的解析式为y=-x+4,直线l2的解析式为y=x-2,l1和l2的交点为点B.(1)直接写出点B坐标;(2)平行于y轴的直线交x轴于点M,交直线l1于E,交直线l2于F.①分别求出当x=2和x=4时EF的值.②直接写出线段EF的长y与x的函数关系式,并画出函数图像L.③在②的条件下,如果直线y=kx+b与L只有一个公共点,直接写出k的取值范围.20.(6分)已知A、B两地相距4800米,甲从A地出发步行到B地,20分钟后乙从B地出发骑自行车到A地,设甲步行的时间为x分钟,甲、乙两人离A地的距离分别为米、米,、与x的函数关系图象如图所示,根据图象解答下列问题:(1)直接写出y、y与x的函数关系式,并写出自变量x的取值范围;(2)求甲出发后多少分钟两人相遇,相遇时乙离A地多少米?21.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在高速公路上的行驶速度不得超过120千米/小时,不得低于60千米/小时,如图,一辆小汽车在高速公路上直道行驶,某一时刻刚好行驶到“车速检测点A”正前方60米B处,过了3秒后,测得小汽车位置C与“车速检测点A”之间的距离为100米,这辆小汽车是按规定行驶吗?22.(8分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差,数据:11,15,18,17,10,19的方差:(1)分别求甲、乙两段台阶的高度平均数;(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关?(3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.23.(8分)如图,是的中线,点是线段上一点(不与点重合).过点作,交于点,过点作,交的延长线于点,连接、.(1)求证:;(2)求证:;(3)判断线段、的关系,并说明理由.24.(8分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.25.(10分)如图,E、F是平行四边形ABCD的对角线AC上的点,且CE=AF.求证:BE∥DF.26.(10分)分解因式和利用分解因式计算(1)(a2+1)2-4a2(2)已知x+y=1.2,x+3y=1,求3x2+12xy+12y2的值。
参考答案一、选择题(每小题3分,共30分)1、C【解析】
解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=.∴点A的坐标是(,3).∵当时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为.故选C.2、A【解析】
根据求函数图象交点的坐标,转化为求两个一次函数构成的方程组解的问题,因此联立两函数的解析式所得方程组,即为两个函数图象的交点坐标.【详解】联立两函数的解析式,得解得,则直线y=3x-1与y=x+3的交点坐标是,故选:A.【点睛】考查了两条直线交点坐标和二元一次方程组解的关系,二元一次方程组的求解,注意函数的图象和性质与代数关系的转化,数形结合思想的应用.3、D【解析】
根据方差越大,则平均值的离散程度越大,波动大;反之,则它与其平均值的离散程度越小,波动小,稳定性越好,比较方差大小即可得出答案.【详解】∵S甲2=0.1.S乙2=0.62,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S甲2<S乙2,∴成绩最稳定的是丁.故选D.【点睛】本题考查的知识点是方差.熟练应用方差的性质是解题的关键.4、C【解析】
先根据直线y=-x判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=-x,k=-1<0,∴y随x的增大而减小,又∵-1<-1<1,∴y3>y1>y1.故选:C.【点睛】本题考查的是正比例函数的增减性,即正比例函数y=kx(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.5、D【解析】
参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故选D.【点睛】此题考查统计量的选择,解题关键在于掌握中位数的意义.6、B【解析】由题意可知△DEF与△ABC的位似比为1︰2,∴其面积比是1︰4,故选B.7、C【解析】
如图,设DE交AP于0,根据菱形的性质、翻折不变性-判断即可解决问题;【详解】解:如图,设DE交AP于O.∵四边形ABCD是菱形∴DA=DC=AB∵A.P关于DE对称,∴DE⊥AP,OA=OP∴DA=DP∴DP=CD,故①正确∵AE=EB,AO=OP∴OE//PB,∴PB⊥PA∴∠APB=90°∴,故②正确若∠DCP=75°,则∠CDP=30°∵LADC=60°∴DP平分∠ADC,显然不符合题意,故③错误;∵∠ADC=60°,DA=DP=DC∴∠DAP=∠DPA,∠DCP=∠DPC,∠CPA=(360°-60°)=150°,故④正确.故选:C【点睛】本题考查菱形的性质、轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8、A【解析】
根据“原计划所用时间-实际所用时间=3”可得方程.【详解】解:设原计划每天施工x米,根据题意,可列方程:,故选择:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.9、C【解析】试题解析:由一次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴直线y=bx+k经过第一、二、四象限,∴直线y=bx+k不经过第三象限,故选C.10、C【解析】
根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案【详解】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选:C.【点睛】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.二、填空题(每小题3分,共24分)11、或【解析】
根据点的坐标左移减右移加,可得答案.【详解】点A为数轴上表示的点,将点A在数轴上向左平移3个单位长度到点B,则点B所表示的实数为;点A为数轴上表示的点,将点A在数轴上向右平移3个单位长度到点B,则点B所表示的实数为;故答案为或.【点睛】此题考查数轴,解题关键在于掌握平移的性质.12、(3,3)或(−3,−3).【解析】
把A的横坐标代入直线解析式求出y的值,确定出A坐标,把A坐标代入反比例解析式求出k的值,确定出反比例解析式,设D(a,a),由直线AB解析式可知,直线AB与y轴正半轴夹角为60°,以O、C、D、E为顶点的四边形是有一组对角为60°的菱形,D在直线y=x上,得到点C只能在y轴上,得出E横坐标为a,把x=a代入反比例函数解析式求出y的值,确定出E坐标,由菱形的边长相等得到OD=ED,进而求出a的值,确定出满足题意D的坐标即可.【详解】把x=代入y=x,得:y=3,即A(,3),把点A(,3)代入y=kx,解得:k=3,∴反比例函数解析式为y=,设D点坐标(a,a),由直线AB解析式可知,直线AB与y轴正半轴夹角为60∘,∵以O、C.D.
E为顶点的四边形是有一组对角为60∘的菱形,D在直线y=x上,∴点C只能在y轴上,∴E点的横坐标为a,把x=a代入y=,得:y=,即E(a,,根据OE=ED,即:,解得:a=±3,则满足题意D为(3,3)或(−3,−3).故答案为:(3,3)或(−3,−3).【点睛】考核知识点:反比例函数与几何结合.数形结合分析问题是关键.13、2.1.【解析】
把给出的6个数据按从小到大(或从大到小)的顺序排列,处于中间的两个数的平均数就是此组数据的中位数.【详解】解:把数据按从小到大排列-3、-2、1、4、1、9共有6个数,则这组数据的中位数为=2.1,所以这组数据的中位数为2.1.
故答案为:2.1.【点睛】本题考查中位数的定义:把数据按从小到大排列,最中间那个数或最中间两个数的平均数叫这组数据的中位数.14、y=﹣4x﹣1【解析】
根据上加下减的法则可得出平移后的函数解析式.【详解】解:将直线y=﹣4x+3向下平移4个单位得到直线l,则直线l的解析式为:y=﹣4x+3﹣4,即y=﹣4x﹣1.故答案是:y=﹣4x﹣1【点睛】本题考查了一次函数图象与几何变换的知识,难度不大,掌握上加下减的法则是关键.15、【解析】
过C作CE⊥x轴于E,过D作DF⊥x轴于F,易得△COE∽△DAF,设C(a,b),则利用相似三角形的性质可得C(4,b),B(10,b),进而得到.【详解】如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠OEC=∠AFD=90°,又,,∽,又是AB的中点,,,设,则,,,,,反比例函数的图象经过点C和AB的中点D,,解得,,又,,,故答案为.【点睛】本题考查了反比例函数图象上点的坐标特征以及平行四边形的性质,解题的关键是掌握:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16、k≤5【解析】
根据关于x的方程有解,当时是一次方程,方程必有解,时是二元一次函数,则可知△≥0,列出关于k的不等式,求得k的取值范围即可.【详解】解:∵方程有解①当时是一次方程,方程必有解,此时②当时是二元一次函数,此时方程有解∴△=16-4(k-1)≥0
解得:k≤5.综上所述k的范围是k≤5.故答案为:k≤5.【点睛】本题考查了一元二次方程根的判别式的应用.
总结:一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.17、1【解析】
根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】解:∵∠BCA=90°,D是AB的中点,∴AB=2CD=12cm,∵E、F分别是AC、BC的中点,∴EF=AB=1cm,故答案为1.【点睛】本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.18、1【解析】
求出x1,x2即可解答.【详解】解:∵x2﹣x=0,∴x(x﹣1)=0,∵x1<x2,∴解得:x1=0,x2=1,则x2﹣x1=1﹣0=1.故答案为:1.【点睛】本题考查一元二次方程的根求解,按照固定过程求解即可,较为简单.三、解答题(共66分)19、(1)(3,1);(2)①EF=2;②见解析.③k>2或k<-2或.k=-【解析】分析:(1)直接联立两个解析式求解即为点B的坐标.(2)①当x=2时,分别求出点E、F的纵坐标即可解答.当x=4时,分别求出点E、F的纵坐标即可解答.②分两种情况讨论:当x或x时,线段EF的长y与x的函数关系式.详解:(1)联立两个解析式可得y=-x+4y=x-2,解得x=3,y=1,∴点B的坐标为(3,1);(2)①如图:当x=2时,y=-x+4=2,∴E(2,2),当x=2时,y=x-2=0,∴F(2,0),∴EF=2;如图:当x=4时,y=-x+4=0,∴E(4,0),当x=4时,y=x-2=2,∴F(4,2),∴EF=2;②L:,图像如图所示:③k>2或k<-2或.k=-.点睛:本题主要考查了一次函数,结合题意熟练的运用一次函数是解题的关键.20、(1)y1=80x(0≤x≤60),y2=-120x+7200(20≤x≤60);(2)甲出发36分钟后两人相遇,相遇时乙离A地2880米.【解析】
(1)根据题意利用函数图像信息进行分析计算即可;(2)由题意可知两人相遇时,甲、乙两人离A地的距离相等,以此建立方程求解,进而得出答案.【详解】解:(1)由题意设甲步行的时间为x分钟,甲、乙两人离A地的距离分别为米、米,甲离A地的距离为y1=80x(0≤x≤60)乙离A地的距离为y2=-120x+7200(20≤x≤60).(2)由题意可知:两人相遇时,甲、乙两人离A地的距离相等,即y1=y2,∴80x=-120x+7200,解得x=36(分钟).当x=36时,y=80×36=2880(米).答:甲出发36分钟后两人相遇,相遇时乙离A地2880米.【点睛】本题考查一次函数图象和一元一次方程的实际应用,读懂题意和一次函数图象信息是解题的关键.21、这辆小汽车是按“中华人民共和国道路交通管理条例”规定行驶.̈【解析】
根据勾股定理求出BC,求出速度,再比较即可.【详解】解:由勾股定理得,BC=Av=80÷3=803(米∵803米/秒=96千米/时,而60<96<120∴这辆小汽车是按“中华人民共和国道路交通管理条例”规定行驶.̈【点睛】本题考查了勾股定理的应用,能求出BC的长是解此题的关键.22、(1)甲台阶高度的平均数15,乙台阶高度的平均数15;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm,游客行走更舒服.【解析】分析:(1)根据图中所给的数据,利用平均数公式求解即可;(2)根据平均数、中位数、方差和极差的特征回答即可;(3)结合方差,要使台阶路走起来更舒服,就得让方差变得更小,据此提出合理性的整修建议.详解:(1)甲台阶高度的平均数:(15+16+16+14+14+15)÷6=15,乙台阶高度的平均数:(11+15+18+17+10+19)÷6=15.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0,游客行走更舒服.点睛:本题主要考查中位数的概念、平均数计算公式以及方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在本题中,根据题意求出方差,进而利用方差的意义进行分析即可.23、(1)证明见解析;(2)证明见解析;(3)BD//AE,BD=AE.【解析】
(1)根据平行线的性质得到∠ABC=∠EKC,∠AMB=∠ECK,得到△ABM∽△EKC;
(2)根据相似三角形的性质得到比例式,计算即可;
(3)根据相似三角形的性质得到DE=AB,得到四边形ABDE是平行四边形,根据平行是四边形的性质解答.【详解】(1)证明:∵,∴,∵,∴,∴;(2)证明:∵,∴,∴,∵是的中线,∴,∴;(3)解:,,∵,∴,∵,∴,∵,∴四边形是平行四边形,∴,.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外研版初一英语易错题解析测试
- 大型户外垃圾桶采购协议
- 初一英语下学期外研版学习经验交流
- 外研版课件市场发展趋势
- 小学一年级奥数攻略
- 外研版七年级英语上册课堂实录
- 女性尿道炎的护理常规
- 戒毒单位之间合作的协议书
- 房物出租协议书
- 粤教沪科版九年级物理上册第十五章电能与电功率15-2认识电功率教学课件
- 数学教材的多模态教学设计与评价
- 《上海奉贤区S村非机动车停放管理的调查报告》4200字
- 常用信纸打印模板
- 基于多模态数据智能分析的非小细胞肺癌识别
- 工笔画教案(上)
- 6.1 模型或原型的特性与作用 课件【知识精研精讲】高中通用技术苏教版(2019)必修《技术与设计1》
- 基于真实情境的小学劳动教育项目化学习 论文
- GJB9001C-2017版内审检查表
- 梗阻性黄疸护理查房课件
- 提高人工气道气囊管理正确率品管圈汇报书ppt模板
- (新平台)国家开放大学《农村社会学》形考任务1-4参考答案
评论
0/150
提交评论