版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省张家界市铄武学校2024届八年级数学第二学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为()A.x=0 B.x=1 C.x=﹣2 D.x=32.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1) B.(2,3) C.(2,2) D.(1,2)3.用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=34.若分式有意义,则的取值范围是()A. B. C. D.5.下列运算,正确的是()A. B. C. D.6.下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=7.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+208.一次函数y=﹣2x﹣3的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若一个多边形的内角和与外角和总共是900°,则此多边形是()A.四边形 B.五边形 C.六边形 D.七边形10.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的个数是()A.1 B.2 C.1 D.4二、填空题(每小题3分,共24分)11.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=____度.12.如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是_____.13.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.14.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么__________(填“李老师”或“王老师”)将被录用.测试项目测试成绩李老师王老师笔试9095面试858016.(2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是.17.如图,的周长为26,点,都在边上,的平分线垂直于,垂足为点,的平分线垂直于,垂足为点,若,则的长为______.18.抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生1500人,则可以估计出该校身高位于160cm和165cm之间的学生大约有_______人.三、解答题(共66分)19.(10分)第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲校20名学生成绩的频数分布表和频数分布直方图如下:b.甲校成绩在的这一组的具体成绩是:8788888889898989c.甲、乙两校成绩的平均分、中位数、众数、方差如下:根据以上图表提供的信息,解答下列问题:(1)表1中a=;表2中的中位数n=;(2)补全图1甲校学生样本成绩频数分布直方图;(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(4)假设甲校200名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为__________.20.(6分)如图,菱形中,是的中点,,.(1)求对角线,的长;(2)求菱形的面积.21.(6分)母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.(1)求A、B两种礼盒的单价分别是多少元?(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?22.(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E、F分别是OA、OC的中点.求证:BE=DF23.(8分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.(1)求第一次每个笔记本的进价是多少?(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?24.(8分)如图,在平行四边形中,已知点在上,点在上,且.求证:.25.(10分)如图,反比例函数的图像与一次函数的图像交于点,点的横坐标是,点是第一象限内反比例函数图像上的动点,且在直线的上方.(1)若点的坐标是,则,;(2)设直线与轴分别交于点,求证:是等腰三角形;(3)设点是反比例函数图像位于之间的动点(与点不重合),连接,比较与的大小,并说明理由.26.(10分)成都市某超市从生产基地购进200千克水果,每千克进价为2元,运输过程中质量损失5%,假设不计超市其他费用(1)如果超市在进价的基础上提高5%作为售价,请你计算说明超市是否亏本;(2)如果该水果的利润率不得低于14%,那么该水果的售价至少为多少元?
参考答案一、选择题(每小题3分,共30分)1、D【解析】
方程mx+n=0就是函数y=mx+n的函数值等于0,所以直线y=mx+n与x轴的交点的横坐标就是方程mx+n=0的解.【详解】解:∵直线y=mx+n(m,n为常数)经过点(1,0),∴当y=0时,x=1,∴关于x的方程mx+n=0的解为x=1.故选D.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.2、D【解析】
根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.【详解】∵A(1,0)的对应点A′的坐标为(2,﹣1),∴平移规律为横坐标加1,纵坐标减1,∵点B(0,3)的对应点为B′,∴B′的坐标为(1,2).故选D.【点睛】本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.3、B【解析】
把常数项移到方程右边,再把方程两边加上1,然后把方程作边写成完全平方形式即可.【详解】解:∵x1+1x﹣1=0,∴x1+1x+1=1,∴(x+1)1=1.故选:B.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.4、A【解析】
根据分式有意义的条件:分母不等于0,即可求解.【详解】解:根据题意得:x-1≠0,
解得:x≠1.
故选:A.【点睛】此题考查分式有意义的条件,正确理解条件是解题的关键.5、D【解析】
分别根据同底数幂的乘除运算法则以及幂的乘方和合并同类项法则求出即可.【详解】A选项:m•m2•m3=m6,故此选项错误;
B选项:m2+m2=2m2,故此选项错误;
C选项:(m4)2=m8,故此选项错误;
D选项:(-2m)2÷2m3=,此选项正确.
故选:D.【点睛】考查了同底数幂的乘除运算法则以及幂的乘方和合并同类项法则等知识,熟练应用运算法则是解题关键.6、C【解析】试题解析:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.考点:正比例函数的定义.7、A【解析】
根据题意找出等量关系:,列出方程即可.【详解】由二月份到四月份每个月的月营业额增长率都相同,二月份的营业额为82万元,若设增长率为,则三月份的营业额为,四月份的营业额为,四月份的营业额比三月份的营业额多20万元,则,故选A【点睛】考查一元二次方程的应用,增长率问题,明确等量关系正确列出方程是解题关键.8、A【解析】考查一次函数的图像特征.点拨:由得系数符号和常数b决定.解答:对于一次函数,当时直线经过第一、二、四象限或第二、三、四象限;,故直线经过第二、三、四象限,不经过第一象限.9、B【解析】
本题需先根据已知条件,再根据多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数【详解】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900°﹣360°=140°,∴多边形的边数是:140°÷180°+2=3+2=1.故选B.【点睛】本题主要考查了多边形内角与外角,在解题时要根据外角和的度数以及内角和度数的计算公式解出本题即可.10、C【解析】
根据正方形基本性质和相似三角形性质进行分析即可.【详解】①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=1.所以BG=1=6﹣1=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EF=DE=2,GF=1,∴EG=5,∴∴S△FGC=S△GCE﹣S△FEC=故选C.【点睛】考核知识点:相似三角形性质.二、填空题(每小题3分,共24分)11、1【解析】
首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.【详解】解:∵正五边形的外角为10°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=1°,∵AF∥CD,∴∠DFA=∠CDB=1°,故答案为1.【点睛】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.12、(3,1)【解析】
关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.13、1.【解析】试题解析:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=2,∠BAQ=∠DQA,∴∠DAQ=∠DAQ,∴△AQD是等腰三角形,∴DQ=AD=2.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=2+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+2)=1.故答案为1.14、3或1.【解析】
当为直角三角形时,有两种情况:①当点落在矩形内部时,如答图1所示.连结,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点、、共线,即沿折叠,使点落在对角线上的点处,则,,可计算出,设,则,,然后在中运用勾股定理可计算出.②当点落在边上时,如答图2所示.此时四边形为正方形.【详解】解:当为直角三角形时,有两种情况:①当点落在矩形内部时,如答图1所示.连结,在中,,,,沿折叠,使点落在点处,,当为直角三角形时,只能得到,点、、共线,即沿折叠,使点落在对角线上的点处,如图,,,,设,则,,在中,,,解得,;②当点落在边上时,如答图2所示.此时为正方形,.综上所述,的长为3或1.故答案为:3或1.【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.15、李老师.【解析】
利用加权平均数的计算方法求出李老师、王老师的最后总成绩,比较得出答案.【详解】解:李老师总成绩为:90×+85×=87,
王老师的成绩为:95×+80×=86,
∵87>86,
∴李老师成绩较好,
故答案为:李老师.【点睛】考查加权平均数的计算方法,以及利用加权平均数对事件作出判断,理解权对平均数的影响.16、2【解析】
解:正方形为旋转对称图形,绕中心旋转每90°便与自身重合.可判断每个阴影部分的面积为正方形面积的,这样可得答案填2.17、3【解析】
首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.【详解】由题知为的垂直平分线,,由题意知为的垂直平分线,.,且,....又点,分别为,的中点,.【点睛】本题考查等腰三角形的判定与性质,解题关键在于利用中位线定理求出PQ.18、1【解析】
根据频率直方图的意义,由用样本估计总体的方法可得样本中160~165的人数,进而可得其频率;计算可得1500名学生中身高位于160cm至165cm之间的人数【详解】解:由题意可知:150名样本中160~165的人数为30人,则其频率为,则1500名学生中身高位于160cm至165cm之间大约有1500×=1人.故答案为1.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;同时本题很好的考查了用样本来估计总体的数学思想.三、解答题(共66分)19、(1)1,88.5;(2)见解析;(3)乙,乙的中位数是85,87>85;(4)140【解析】
(1)根据频数分布表和频数分布直方图的信息列式计算即可得到a的值,根据中位数的定义求解可得n的值;
(2)根据题意补全频数分布直方图即可;
(3)根据甲这名学生的成绩为87分,小于甲校样本数据的中位数88.5分,大于乙校样本数据的中位数85分可得;
(4)利用样本估计总体思想求解可得.【详解】(1)a=,由频数分布表和频数分布直方图中的信息可知,排在中间的两个数是88和89,∴,
故答案为:1,88.5;
(2)∵b=20-1-3-8-6=2,
∴补全图1甲校学生样本成绩频数分布直方图如图所示;(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是乙校的学生,
理由:乙的中位数是85,87>85,
故答案为:乙,乙的中位数是85,87>85;(4),∴成绩优秀的学生人数为140人,故答案为:140人.【点睛】此题考查频数分布表,频数分布直方图,中位数的计算方法,利用部分估计总体的方法,正确理解题意是解题的关键.20、(1),;(2)【解析】
(1)根据是的中点,得到,再根据菱形的性质得到是等边三角形,得到BD的长,再利用勾股定理进而可以求出AO的长度,根据AC=2AO得到答案;(2)根据菱形的面积等于两对角线的积的一半,列式求解即可得到答案;【详解】解:(1)为的中点,,菱形中,,,是等边三角形,,,;(2)菱形的面积;【点睛】本题主要考查了菱形的性质、菱形的面积计算、等边三角形的判定与性质,掌握菱形的面积=两对角线的积的一半是解题的关键;21、(1)A种礼盒单价为90元,B种礼盒单价为120元;(2)见解析;(3)1320元.【解析】
(1)利用A、B两种礼盒的单价比为3:4,单价和为210元,得出等式求出即可;(2)利用两种礼盒恰好用去9900元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;(3)首先表示出店主获利,进而利用w,m关系得出符合题意的答案.【详解】(1)设A种礼盒单价为3x元,B种礼盒单价为4x元,则:3x+4x=210,解得x=30,所以A种礼盒单价为3×30=90元,B种礼盒单价为4×30=120元.(2)设A种礼盒购进a个,购进B种礼盒b个,则:90a+120b=9900,可列不等式组为:,解得:30≤a≤36,因为礼盒个数为整数,所以符合的方案有2种,分别是:第一种:A种礼盒30个,B种礼盒60个,第二种:A种礼盒34个,B种礼盒57个.(3)设该商店获利w元,由(2)可知:w=12a+(18﹣m)b,a=110-,则w=(2﹣m)b+1320,若使所有方案都获利相同,则令2﹣m=0,得m=2,此时店主获利1320元.【点睛】此题主要考查了一元一次方程的应用以及一次函数的应用和一元一次不等式的应用,根据题意结合得出正确等量关系是解题关键.22、详见解析【解析】
根据题意可得BO=DO,再由E、F是AO、CO的中点可得EO=FO,即可证全等求出BE=DF.【详解】∵ABCD是平行四边形,∴BO=DO,AO=CO,∵E、F分别是OA、OC的中点,∴EO=FO,又∵∠COD=∠BOE,∴△BOE≌△DOF(SAS),∴BE=DF.【点睛】本题考查三角形全等,关键在于由平行四边形的性质得出有用的条件,再根据图形判断全等所需要的条件.23、(1)1元(2)2元【解析】
(1)设第一次每个笔记本的进价为x元,然后根据第二次又用100元购进该种型号的笔记本数量比第一次少20个列方程求解即可;(2)设每个笔记本售价为y元,然后根据全部销售完毕后后获利不低于160元列不等式求解即可.【详解】解:(1)设第一次每个笔记本的进价为x元.依据题可得,解这个方程得:x=1.经检验,x=1是原方程的解.故第一次每个笔记本的进价为1元.(2)设每个笔记本售价为y元.根据题意得:,解得:y≥2.所以每个笔记本得最低售价是2元.【点睛】本题主要考查的是分式方程和一元一次不等式的应用,找出题目的相等关系和不等关系是解题的关键.24、证明见解析.【解析】
由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=FD,易证四边形EBFD是平行四边形.【详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF.∴BE=FD,BE∥FD,∴四边形EBFD是平行四边形,∴DE=BF.【点睛】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.25、(1),.(2)详见解析;(3),理由详见解析.【解析】
(1)由P点坐标可直接求得k的值,过P、B两点,构造矩形,利用面积的和差可求得△PBO的面积,利用对称,则可求得△PAB的面积;(2)可设出P点坐标,表示出直线PA、PB的解析式,则可表示出M、N的坐标,作PG⊥x轴于点G,可求得MG=NG,即G为MN的中点,则可证得结论;(3)连接QA交x轴于点M′,连接QB并延长交x轴于点N′,利用(2)的结论可求得∠MM′A=∠QN′O,结合(2)可得到∠PMN=∠PNM,利用外角的性质及对顶角进一步可求得∠PAQ=∠PBQ.【详解】(1)∵点P(1,4)在反比例函数图象上,∴k=4×1=4,∵B点横坐标为4,∴B(4,1),连接OP,过P作x轴的平行线,交y轴于点P′,过B作y轴的平行线,交x轴于点B′,两线交于点D,如图1,则D(4,4),∴PP′=1,P′O=4,OB′=4,BB′=1,∴BD=4-1=3,PD=4-1=3,∴S△POB=S矩形OB′DP′-S△PP′O-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44774-2024汽车信息安全应急响应管理规范
- 2024年度桥梁拆除工程承包合同
- 2024年度知识产权许可合同许可项目与许可费用
- 2024年度电商平台物流配送合同
- 2024年度智能家居产品买卖及安装合同2篇
- 《铁路知识学习材料》课件
- 2024年度技术开发合作合同:科技公司与研发团队共同开展新技术研究的协议
- 2024年度手机销售合同市场推广及售后服务
- 工业网络控制技术 课件 项目3 简单CPU通信应用
- 2024年度环保科技公司污染治理合同3篇
- 奢沟小学2024年春季学期法治副校长进校园开展安全、法制知识讲座实施方案
- 道法珍惜师生情谊教学课件 2024-2025学年统编版道德与法治七年级上册
- 《唱:隆里格隆 》教学设计苏少版四年级音乐下册(五线谱)第七单元 奇妙人声
- 学术英语智慧树知到答案2024年南开大学
- 奇妙的透镜说课课件-2024-2025学年沪粤版物理八年级上学期
- 农民工欠薪调解协议书模板
- 2024至2030年中国消防行业市场发展规模及投资机会分析报告
- 商铺出售回购协议书范本
- 港口液体危化品装卸管理人员理论考试题库-上(单选题)
- 电玩城消防应急疏散预案
- 人工智能技术应用专业调研报告
评论
0/150
提交评论