河南周口地区洪山乡联合中学2024年八年级下册数学期末达标检测试题含解析_第1页
河南周口地区洪山乡联合中学2024年八年级下册数学期末达标检测试题含解析_第2页
河南周口地区洪山乡联合中学2024年八年级下册数学期末达标检测试题含解析_第3页
河南周口地区洪山乡联合中学2024年八年级下册数学期末达标检测试题含解析_第4页
河南周口地区洪山乡联合中学2024年八年级下册数学期末达标检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南周口地区洪山乡联合中学2024年八年级下册数学期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知一次函数y=x-2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()A. B. C. D.2.某人从一鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条a+b2A.a>b B.a<b C.a=b D.与ab大小无关3.如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为A.1 B.2C.3 D.44.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.如图,在菱形中,,.是边上的一点,,分别是,的中点,则线段的长为()A. B. C. D.6.若=2﹣a,则a的取值范围是()A.a=2 B.a>2 C.a≥2 D.a≤27.下列美丽的图案,不是中心对称图形的是()A. B.C. D.8.在平面直角坐标系中,点O为原点,直线y=kx+b交x轴于点A(﹣2,0),交y轴于点B.若△AOB的面积为8,则k的值为()A.1 B.2 C.﹣2或4 D.4或﹣49.已知,则下列不等式中不正确的是()A. B. C. D.10.点A,B,C,D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为()A.点E B.点FC.点H D.点G11.一组数据2,2,4,3,6,5,2的众数和中位数分别是A.3,2 B.2,3 C.2,2 D.2,412.甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同。设甲每天加工服装x件。由题意可得方程()A. B.C. D.二、填空题(每题4分,共24分)13.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为_________,频率为_________.14.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.15.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F=30°,DE=1,则EF的长是_____.16.如图,在正方形的内侧,作等边,则的度数是________.17.如图,在四边形中,对角线相交于点,则四边形的面积是_____.18.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩的方差为1.2,乙的成绩的方差为3.9,由此可知_____的成绩更稳定.三、解答题(共78分)19.(8分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)中,,将沿翻折至,连结.结论1:与重叠部分的图形是等腰三角形;结论2:.试证明以上结论.(应用与探究)在中,已知,,将沿翻折至,连结.若以、、、为顶点的四边形是正方形,求的长.(要求画出图形)20.(8分)在实施漓江补水工程中,某水库需要将一段护坡土坝进行改造.在施工质量相同的情况下,甲、乙两施工队给出的报价分别是:甲施工队先收启动资金1000元,以后每填土1立方米收费20元,乙施工队不收启动资金,但每填土1立方米收费25元.(1)设整个工程需要填土为X立方米,选择甲施工队所收的费用为Y甲元,选择乙施工队所收的费用为Y乙元.请分别写出Y甲、Y乙、关于X的函数关系式;(2)如图,土坝的横截面为梯形,现将背水坡坝底加宽2米,即BE=2米,已知原背水坡长AB=4,土坝与地面的倾角∠ABC=60度,要改造100米长的护坡土坝,选择哪家施工队所需费用较少?(3)如果整个工程所需土方的总量X立方米的取值范围是100≤X≤800,应选择哪家施工队所需费用较少?21.(8分)如图,在平行四边形中,过点作于点,点在边上,,连接,.(1)求证:四边形BFDE是矩形;(2)若CF=3,BE=5,AF平分∠DAB,求平行四边形的面积.22.(10分)在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2),M,N两点之间的距离,可以用公式MN=计算.解答下列问题:(1)若已知点A(1,2),B(4,-2),求A,B两点间的距离;(2)在(1)的条件下,点O是坐标原点,判断△AOB是什么三角形,并说明理由.23.(10分)探究:如图1,在△ABC中,AB=AC,CF为AB边上的高,点P为BC边上任意一点,PD⊥AB,PE⊥AC,垂足分别为点D,E.求证:PD+PE=CF.嘉嘉的证明思路:连结AP,借助△ABP与△ACP的面积和等于△ABC的面积来证明结论.淇淇的证明思路:过点P作PG⊥CF于G,可证得PD=GF,PE=CG,则PD+PE=CF.迁移:请参考嘉嘉或淇淇的证明思路,完成下面的问题:(1)如图1.当点P在BC延长线上时,其余条件不变,上面的结论还成立吗?若不成立,又存在怎样的关系?请说明理由;(1)当点P在CB延长线上时,其余条件不变,请直接写出线段PD,PE和CF之间的数量关系.运用:如图3,将矩形ABCD沿EF折叠,使点D落在点B处,点C落在点C′处.若点P为折痕EF上任一点,PG⊥BE于G,PH⊥BC于H,若AD=18,CF=5,直接写出PG+PH的值.24.(10分)嘉嘉将长为20cm,宽为10cm的长方形白纸,按图所示方法粘合起来,粘合部分(图上阴影部分)的宽为3cm.(1)求5张白纸粘合后的长度;(2)设x张白纸粘合后总长为ycm.写出y与x之间的函数关系式;(3)求当x=20时的y值,并说明它在题目中的实际意义.25.(12分)如图,在平面直角坐标系中,以原点为位似中心,将放大到原来的倍后得到,其中、在图中格点上,点、的对应点分别为、。(1)在第一象限内画出;(2)若的面积为3.5,求的面积。26.如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°,求∠B的度数.

参考答案一、选择题(每题4分,共48分)1、C【解析】

由已知条件知x-1>0,通过解不等式可以求得x>1.然后把不等式的解集表示在数轴上即可.【详解】∵一次函数y=x-1,∴函数值y>0时,x-1>0,解得x>1,表示在数轴上为:

故选:C【点睛】本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2、A【解析】

本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.利润=总售价-总成本=a+b2b×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<【详解】利润=总售价-总成本=a+b2b×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<0

∴0.5b-0.5a<0,

∴a>b.

故选A【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式.3、A【解析】

由△ACD∽△ADB,根据相似三角形的对应边成比例,可得AC:AD=AD:AB,又由AC=4,AD=2,即可求得AB的长.【详解】∵△ACD∽△ADB,∴,∴AB==1,故选A.【点睛】考查相似三角形的性质,相似三角形对应边成比例.4、D【解析】

直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;

B、是轴对称图形,不是中心对称图形,故此选项错误;

C、是轴对称图形,不是中心对称图形,故此选项错误;

D、既是中心对称图形也是轴对称图形,故此选项正确.

故选:D.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.5、C【解析】

如图连接BD.首先证明△ADB是等边三角形,可得BD=8,再根据三角形的中位线定理即可解决问题.【详解】如图连接BD.∵四边形ABCD是菱形,∴AD=AB=8,∵∴△ABD是等边三角形,∴BA=AD=8,∵PE=ED,PF=FB,∴故选:C.【点睛】考查菱形的性质以及三角形的中位线定理,三角形的中位线平行于第三边并且等于第三边的一半.6、D【解析】

根据二次根式有意义的条件分析可得解.【详解】∵=2-ɑ,∴a-2≤0,即a≤2,故选D.7、B【解析】

解:A是中心对称图形,不符合题意;B不是中心对称图形,符合题意;C是中心对称图形,不符合题意;D是中心对称图形,不符合题意,故选B.【点睛】本题考查中心对称图形,正确识图是解题的关键.8、D【解析】令x=0,y=b,∴B(0,b),∴OB=|b|,∵A(-2,0),∴OA=2,∴S△AOB=OA·OB=8,即×2×|b|=8,|b|=8,b=±8.∴B(0,8)或B(0,-8),①设y=kx+8,将A(-2,0)代入解析式得-2k+8=0,k=4;②设y=kx-8,将A(-2,0)代入解析式得-2k-8=0,k=-4;∴k=4或-4.故选D.点睛:将点的坐标转化为线段的长度时注意符号问题.9、D【解析】

根据不等式的性质逐项分析即可.【详解】A.∵,∴,故正确;B.∵,∴,故正确;C.∵,∴,故正确;D.∵,∴,故不正确;故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.10、B【解析】

根据位似图形对应点连线过位似中心判断即可.【详解】解:点A、B、C、D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为点F,

故选:B.【点睛】此题考查位似变换,解题关键是弄清位似中心的定义.11、B【解析】

根据众数的意义,找出出现次数最多的数,根据中位数的意义,排序后找出处在中间位置的数即可.【详解】解:这组数据从小到大排列是:2,2,2,3,4,5,6,出现次数最多的数是2,故众数是2;处在中间位置的数,即处于第四位的数是中位数,是3,故选:.【点睛】考查众数、中位数的意义,即从出现次数最多的数、和排序后处于之中间位置的数.12、C【解析】

根据乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同,列出相应的方程,本题得以解决.【详解】解:由题意可得,,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.二、填空题(每题4分,共24分)13、80.4【解析】

频数是指某个数据出现的次数,频率是频数与总数之比,据频数、频率的定义计算即可.【详解】解:在64.5~66.5这一小组中,65出现5次,66出现3次,出现数据的次数为5+3=8次,故其频数为8,,故其频率为0.4.故答案为:(1).8(2).0.4【点睛】本题考查了频数与频率,依据两者的定义即可解题.14、【解析】

设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】设A坐标为(x,y),∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A(-2,-3),设过点A的反比例解析式为y=,把A(-2,-3)代入得:k=6,则过点A的反比例解析式为y=,故答案为y=.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.15、1【解析】

连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE=EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.【详解】解:如图:连接BE∵AB的垂直平分线DE交BC的延长线于F,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE=∠F,∴BE=EF,在Rt△BED中,BE=1DE=1×1=1,∴EF=1.故答案为:1.【点睛】本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.16、【解析】

由正方形和等边三角形的性质得出∠ABE=30°,AB=BE,由等腰三角形的性质和三角形内角和定理即可求出∠AEB的度数.【详解】∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵△EBC是等边三角形,∴BE=BC,∠EBC=60°,∴∠ABE=90°−60°=30°,AB=BE,∴∠AEB=∠BAE=(180°−30°)=1°;故答案为:1.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质,并能进行推理论证与计算是解决问题的关键.17、24【解析】

判断四边形ABCD为平行四边形,即可根据题目信息求解.【详解】∵在中∴四边形ABCD为平行四边形∴故答案为:24【点睛】本题考查了平行四边形的判定,解题的关键在于根据题目中的数量关系得出四边形ABCD为平行四边形.18、甲【解析】

根据方差的定义,方差越小数据越稳定.【详解】解:因为S甲2=1.2<S乙2=3.9,方差小的为甲,所以本题中成绩比较稳定的是甲.故答案为甲;【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题(共78分)19、【发现与证明】结论1:见解析,结论1:见解析;【应用与探究】AC的长为或1.【解析】

【发现与证明】由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA=(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;【应用与探究】:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=1.【详解】【发现与证明】:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,∵△ABC≌△AB′C,∴∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE=CE,即△ACE是等腰三角形;∴DE=B′E,∴∠CB′D=∠B′DA=11(180°−∠B′ED),∵∠AEC=∠B′ED,∴∠ACB′=∠CB′D,∴B′D∥AC;【应用与探究】:分两种情况:①如图1所示:∵四边形ACDB′是正方形,∴∠CAB′=90°,∴∠BAC=90°,∵∠B=45°,∴AC=;②如图1所示:AC=BC=1;综上所述:AC的长为或1.【点睛】本题考查平行四边形的性质,正方形的性质,翻折变换(折叠问题).【发现与证明】对于结论1,要证明三角形是等腰三角形,只需要证明它的两条边相等,而在同一个三角形内要证明两条线段相等只需要证明它们所对应的角相等(即用等角对等边证明).结论1:要证明两条线段平行,本题用到了内错角相等,两直线平行.所以解决【发现与证明】的关键是根据已知条件找到对应角之间的关系.【应用与探究】折叠时,因为正方形的四个角都是直角,所以对应线段之间存在共线情况,所以分BA和AB’共线和BC和B’C两种情况讨论,能根据题意画出两种情况对应的图形,是解题关键.20、(1)由题意,y甲=1000+20x,y乙=25x;(2)选择甲施工队所需费用较少(3)见解析【解析】分析:(1)、根据题意总费用=每立方米费用乘以立方米数加上额外费用从而得出函数解析式;(2)、过A作AF⊥BC于F,根据直角三角形的面积计算法则得出土方的数量,然后分别求出两个施工队的费用,从而得出答案;(3)、根据不等式的性质求出答案.详解:(1)由题意,y甲=1000+20x,y乙=25x;(2)如图,过A作AF⊥BC于F,∵∠ABC=60°,AB=4,∴AF=6,∴S△ABE=BE•AF=6,∴100米长的护坡土坝的土方的总量为6×100=600,当x=600时,y甲=13000;y乙=15000,∴选择甲施工队所需费用较少;(3)①当y甲=y乙,则1000+20x=25x,∴x=200,②当x>200时,y甲<y乙;③当0<x<200时,y甲>y乙.∴当100<x<200时,选择乙工程队;当x>200时,选择甲工程队;当x=200时,甲乙一样.点睛:本题主要考查的是一次函数的实际应用以及不等式的应用,属于中等难度的题型.根据题意得出等量关系是解决这个问题的关键.21、(1)见解析;(2)32【解析】

(1)先求出四边形BFDE是平行四边形,再根据矩形的判定推出即可;(2)根据勾股定理求出DE长,即可得出答案.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,∵DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵AF平分∠DAB,∴∠DAF=∠FAB,∵平行四边形ABCD,∴AB∥CD,∴∠FAB=∠DFA,∴∠DFA=∠DAF,∴AD=DF=5,在Rt△ADE中,DE=,∴平行四边形ABCD的面积=AB•DE=4×8=32,【点睛】考查了平行四边形的性质,矩形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.22、(1)A,B两点间的距离AB=5;(2)△AOB是直角三角形,见解析.【解析】

(1)根据题意给出的公式即可求出答案.(2)根据勾股定理逆定理即可求出答案.【详解】(1)由题意可知:AB=;(2)由两点之间距离公式可求得:AB2=25,AO2=5,BO2=20,∴AB2=AO2+BO2,∴△AOB是直角三角形;【点睛】本题考查勾股定理,解题的关键是正确理解题意给出的公式,本题属于中等题型.23、(1)不成立,CF=PD-PE,理由见解析;(1)CF=PE-PD理由见解析;运用:PG+PH的值为11.【解析】

(1)由三角形的面积和差关系可求解;(1)由三角形的面积和差关系可求解;(3)易证BE=BF,过点E作EQ⊥BF,垂足为Q,利用探究中的结论可得PG+PH=EQ,易证EQ=AB,BF=BE=DE=3,只需求出AB即可.【详解】解:(1)不成立,CF=PD-PE理由如下:连接AP,如图,∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ABP-S△ACP,∴AB•CF=AB•PD-AC•PE.∵AB=AC,∴CF=PD-PE.(1)CF=PE-PD理由如下:如图,∵S△ABC=S△ACP-S△ABP,∴AB•CF=AC•PE-AB•PD∵AB=AC∴CF=PE-PD运用:过点E作EQ⊥BC,垂足为Q,如图,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠A=∠ABC=90°.∵AD=18,CF=5,∴BF=BC-CF=AD-CF=3.由折叠可得:DE=BB,∠BEF=∠DEF.∵AD∥BC∴∠DEF=∠EFB∴∠BEF=∠BFE∴BE=BF=3=DE∴AE=5∵∠A=90°,∴AB==11∵EQ⊥BC,∠A=∠ABC=90°.∴∠EQC=90°=∠A=∠ABC∴四边形EQBA是矩形.∴EQ=AB=11.由探究的结论可得:PG+PH=EQ.∴PG+PH=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论