版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省威海市文登区文登实验、三里河中学2024年八年级数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,函数y=(k﹣1)x+(k+2)(k﹣2)的图象不经过第二象限与第四象限,则常数k满足()A.k=2 B.k=﹣2 C.k=1 D.k>12.下列表格是二次函数的自变量x与函数值y的对应值,判断方程(为常数)的一个解x的范围是x…6.176.186.196.20……-0.03-0.010.020.04…A. B.C. D.3.在学校举办的独唱比赛中,10位评委给小丽的平分情况如表所示:成绩(分)678910人数32311则下列说法正确的是()A.中位数是7.5 B.中位数是8 C.众数是8 D.平均数是84.无论a取何值,关于x的函数y=﹣x+a2+1的图象都不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.等边三角形的边长为2,则该三角形的面积为()A.4 B. C.2 D.36.对于函数,下列结论正确的是()A.它的图象必经过点(-1,1) B.它的图象不经过第三象限C.当时, D.的值随值的增大而增大7.王老师对甲、乙两人五次数学成绩进行统计,两人平均成绩均为90分,方差S甲2=12,S乙2=51,则下列说法正确的是()A.甲、乙两位同学的成绩一样稳定B.乙同学的成绩更稳定C.甲同学的成绩更稳定D.不能确定8.李华根据演讲比赛中九位评委所给的分数制作了表格:如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()平均数中位数众数方差8.5分8.3分8.1分0.15A.平均数 B.众数 C.方差 D.中位数9.已知一元二次方程,则它的一次项系数为()A. B. C. D.10.下列条件中,不能判定一个四边形是平行四边形的是()A.两组对边分别平行 B.一组对边平行且相等 C.两组对角分别相等 D.一组对边相等且一组对角相等二、填空题(每小题3分,共24分)11.反比例函数图像上三点的坐标分别为A(-1,y1),B(1,y2),C(3,y3),则y1,y2,,y3的大小关系是_________。(用“>”连接)12.观察下列各式,并回答下列问题:①;②;③;……(1)写出第④个等式:________;(2)将你猜想到的规律用含自然数的代数式表示出来,并证明你的猜想.13.如图,点A在双曲线y=上,AB⊥y轴于B,S△ABO=3,则k=__________14.如图,在正方形中,点、在对角线上,分别过点、作边的平行线交于点、,作边的平行线交于点、.若,则图中阴影部分图形的面积和为_____.15.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:点到直线的距离公式是:如:求:点到直线的距离.解:由点到直线的距离公式,得根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.则两条平行线:和:间的距离是______.16.若,则分式_______.17.如图,过正方形的顶点作直线,过作的垂线,垂足分别为.若,,则的长度为.18.直线y=2x+3与x轴相交于点A,则点A的坐标为_____.三、解答题(共66分)19.(10分)解不等式组,并将它的解集在数轴上表示出来.20.(6分)春季流感爆发,有一人患了流感,经过两轮传染后共有人患了流感,(1)每轮传染中平均一个人传染了几个人?(2)经过三轮传染后共有多少人患了流感?21.(6分)先化简,再求值:÷(m﹣1﹣),其中m=.22.(8分)先化简,再求值:,其中.23.(8分)如图,在平面直角坐标系中,有一,且,,,已知是由绕某点顺时针旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出顺时针旋转90°、180°的三角形;(3)设两直角边、、斜边,利用变换前后所形成的图案验证勾股定理.24.(8分)某校为了选拔学生参加区里“五好小公民”演讲比赛,对八年级一班、二班提前选好的各10名学生进行预选(满分10分),绘制成如下两幅统计表:表(1):两班成绩序号1号2号3号4号5号6号7号8号9号10号一班(分)588981010855二班(分)1066910457108表(2):两班成绩分析表班级平均分中位数众数方差及格率一班7.6ab3.4430%二班c7.5104.4540%(1)在表(2)中填空,a=________,b=________,c=________.(2)一班、二班都说自己的成绩好,你赞同谁的说法?请给出两条理由.25.(10分)如图,在中,对角线AC,BD交于点O,E是AD上任意一点,连接EO并延长,交BC于点F,连接AF,CE.(1)求证:四边形AFCE是平行四边形;(2)若,°,.①直接写出的边BC上的高h的值;②当点E从点D向点A运动的过程中,下面关于四边形AFCE的形状的变化的说法中,正确的是A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→矩形→平行四边形→正方形→平行四边形C.平行四边形→菱形→平行四边形→菱形→平行四边形D.平行四边形→菱形→平行四边形→矩形→平行四边形26.(10分)把顺序连结四边形各边中点所得的四边形叫中点四边形。(1)任意四边形的中点四边形是什么形状?为什么?(2)符合什么条件的四边形,它的中点四边形是菱形?(3)符合什么条件的四边形,它的中点四边形是矩形?
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据一次函数的性质求解.【详解】∵一次函数y=(k-1)x+(k+2)(k-2)的图象不经过第二象限与第四象限,则k-1>0,且(k+2)(k-2)=0,解得k=2,故选A.【点睛】本题考查一次函数的图象与系数的关系,关键是根据一次函数的性质解答.2、C【解析】利用二次函数和一元二次方程的性质.由表格中的数据看出-0.01和0.02更接近于0,故x应取对应的范围.故选C.3、A【解析】
分别利用众数、中位数及加权平均数的定义及公式求得答案后即可确定符合题意的选项.【详解】∵共10名评委,∴中位数应该是第5和第6人的平均数,为7分和8分,∴中位数为:7.5分,故A正确,B错误;∵成绩为6分和8分的并列最多,∴众数为6分和8分,故C错误;∵平均成绩为:=8.5分,故D错误,故选:A.【点睛】本题考查了众数、中位数及加权平均数的知识,解题的关键是能够根据定义及公式正确的求解,难度不大.4、C【解析】
根据题目中的函数解析式和一次函数的性质可以解答本题.【详解】解:∵y=﹣x+a2+1,k=﹣1<0,a2+1≥1>0,∴函数y=﹣x+a2+1经过第一、二、四象限,不经过第三象限,故选:C.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.5、B【解析】∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC⋅AD=×2×=,故选B.6、B【解析】
将x=-1代入一次函数解析式求出y值即可得出A错误;由一次函数解析式结合一次函数系数与图象的关系即可得出B正确;求出一次函数与x轴的交点即可得出C错误;由一次函数一次项系数k=-3<0即可得出D不正确.此题得解.【详解】A、令y=-3x+4中x=-1,则y=8,∴该函数的图象不经过点(-1,1),即A错误;B、∵在y=-3x+4中k=-3<0,b=4>0,∴该函数图象经过第一、二、四象限,即B正确;C、令y=-3x+4中y=0,则-3x+4=0,解得:x=,∴该函数的图象与x轴的交点坐标为(,0),∴当x<时,y>0,故C错误;D、∵在y=-3x+4中k=-3<0,∴y的值随x的值的增大而减小,即D不正确.故选:B.【点睛】本题考查了一次函数的性质以及一次函数图象与系数的关系,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.7、C【解析】分析:先根据甲的方差比乙的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.详解:∵S2甲=12、S2乙=51,∴S2甲<S2乙,∴甲比乙的成绩稳定;故选C.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、D【解析】
由一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数;接下来根据中位数的定义,结合去掉一个最高分和一个最低分,不难得出答案.【详解】解:中位数是将一组数从小到大的顺序排列,取中间位置或中间两个数的平均数得到,所以如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选D.【点睛】本题主要考查平均数、众数、方差、中位数的定义,其中一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数.9、D【解析】
根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【详解】解:一元二次方程,则它的一次项系数为-2,故选:D.【点睛】此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式为ax2+bx+c=0(a≠0).10、D【解析】
根据平行四边形的判定方法逐一进行判断即可.【详解】A.两组对边分别平行的四边形是平行四边形,故A选项正确,不符合题意;B.一组对边平行且相等的四边形是平行四边形,故B选项正确,不符合题意;C.两组对角分别相等的四边形是平行四边形,故C选项正确,不符合题意;D.一组对边相等且一组对角相等的四边形不一定是平行四边形,如图,四边形ABCD为平行四边形,连接AC,作AE垂直BC于E,在EB上截取EC'=EC,连接AC',则△AEC'≌△AEC,AC'=AC,把△ACD绕点A顺时针旋转∠CAC'的度数,则AC与AC'重合,显然四边形ABC'D'满足:AB=CD=C'D',∠B=∠D=∠D',而四边形ABC'D'并不是平行四边形,故D选项错误,符合题意,故选D.【点睛】本题考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解本题的关键.二、填空题(每小题3分,共24分)11、【解析】
此题可以把点A、B、C的横坐标代入函数解析式求出各纵坐标后再比较大小.【详解】解:当x=-1时,y1=;当x=1时,y2=;当x=3时,y3=;故y1>y3>y2.【点睛】本题考查反比例函数图象上点的坐标特征,对于此类问题最简单的办法就是将x的值分别代入函数解析式中,求出对应的y再比较大小.也可以画出草图,标出各个点的大致位置坐标,再比较大小.12、(1);(2)猜想:【解析】
(1)此题应先观察列举出的式子,可找出它们的一般规律,直接写出第④个等式即可;(2)找出它们的一般规律,用含有n的式子表示出来,证明时,将等式左边被开方数进行通分,把被开方数的分子开方即可.【详解】(1)1)观察列举出的式子,可找出它们的一般规律,直接写出第④个等式:故答案为:(2)猜想:用含自然数的代数式可表示为:证明:左边右边,所以猜想正确.【点睛】本题主要考查学生把特殊归纳到一般的能力及二次根式的化简,解题的关键是仔细观察,找出各式的内在联系解决问题.13、6【解析】
根据反比例函数系数k的几何意义得出S△ABO=|k|,即可求出表达式.【详解】解:∵△OAB的面积为3,∴k=2S△ABO=6,∴反比例函数的表达式是y=即k=6【点睛】本题考查反比例函数系数k的几何意三角形面积=|k|,学生们熟练掌握这个公式.14、2【解析】
首先根据已知条件,可得出矩形BEPF和矩形BHQG是正方形,阴影部分面积即为△ABD的面积,即可得解.【详解】解:由已知条件,得∠DBC=∠ABD=∠BPE=∠BQH=45°,∴矩形BEPF和矩形BHQG是正方形,又∵BP、BQ分别为正方形BEPF和正方形BHQG的对角线∴,∴阴影部分的面积即为△ABD的面积,∴故答案为2.【点睛】此题主要考查正方形的判定,然后利用其性质进行等量转换,即可解题.15、【解析】
根据题意在:上取一点,求出点P到直线:的距离d即可.【详解】在:上取一点,
点P到直线:的距离d即为两直线之间的距离:
,
故答案为.【点睛】本题考查了两直线平行或相交问题,一次函数的性质,点到直线距离,平行线之间的距离等知识,解题的关键是学会利用公式解决问题,学会用转化的思想思考问题.16、【解析】
先把化简得到,然后把分式化简,再把看作整体,代入即可.【详解】∵,化简可得:,∵,把代入,得:原式=;故答案为:.【点睛】本题考查了分式的化简求值,解题的关键是利用整体代入的思想进行解题.17、【解析】
先利用AAS判定△ABE≌△BCF,从而得出AE=BF,BE=CF,最后得出AB的长.【详解】∵四边形ABCD是正方形,∴∠CBF+∠FBA=90°,∠CBF+∠BCF=90°,∴∠BCF=∠ABE,∵∠AEB=∠BFC=90°,AB=BC,∴△ABE≌△BCF(AAS)∴AE=BF,BE=CF,∴AB=.故答案为18、(−,0)【解析】
根据一次函数与x轴的交点,y=0;即可求出A点的坐标.【详解】解:∵当y=0时,有,解得:,∴A点的坐标为(−,0);故答案为:(−,0).【点睛】本题考查了一次函数与x轴的交点坐标,解答此题的关键是熟知一次函数与坐标轴的交点,与x轴有交点,则y=0.三、解答题(共66分)19、不等式组的解集为.
【解析】
首先解每个不等式,然后把每个解集在数轴上表示出来,确定不等式的解集的公共部分就是不等式组的解集.【详解】解不等式,得:,解不等式,得:,将不等式的解集表示在数轴上如下:所以不等式组的解集为.【点睛】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来向右画;,向左画,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示.20、(1)每轮传染中平均一个人传染8个人;(2)经过三轮传染后共有729人会患流感.【解析】
(1)设每轮传染中平均一个人传染x个人,根据经过两轮传染后共有81人患了流感,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据经过三轮传染后患流感的人数=经过两轮传染后患流感的人数+经过两轮传染后患流感的人数×8,即可求出结论.【详解】解:(1)设每轮传染中平均一个人传染x个人,
根据题意得:1+x+x(x+1)=81,
整理,得:x2+2x-80=0,
解得:x1=8,x2=-10(不合题意,舍去).
答:每轮传染中平均一个人传染8个人.
(2)81+81×8=729(人).
答:经过三轮传染后共有729人会患流感.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.21、原式=,.【解析】
试题分析:先将所给分式按照运算顺序化简为,然后把代入计算即可.试题解析:原式===;∴当时,原式=考点:分式的化简求值.22、【解析】
根据分式的运算法则即可进行化简求值.【详解】原式===当x=时,原式==【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23、(1)旋转中心坐标是,旋转角是;(2)见解析;(3)见解析【解析】
(1)由图形可知,对应点的连线CC1、AA1的垂直平分线过点O,根据旋转变换的性质,点O即为旋转中心,再根据网格结构,观察可得旋转角为90°;(2)利用网格结构,分别找出旋转后对应点的位置,然后顺次连接即可;(3)利用面积,根据正方形CC1C2C3的面积等于正方形AA1A2B的面积加上△ABC的面积的4倍,列式计算即可得证.【详解】(1)旋转中心坐标是,旋转角是(2)画出图形如图所示.(3)由旋转的过程可知,四边形和四边形是正方形.∵,∴,,∴.即中,,【点睛】本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,勾股定理的证明,熟练掌握网格结构,找出对应点的位置是解题的关键.24、(1)8,8,7.5;(2)一班的成绩更好,理由见解析.【解析】
(1)根据中位数、众数的定义及平均数的计算公式求解即可;(2)一班的成绩更好,从平均数、中位数、方差方面分析即可.【详解】解:(1)在5,5,5,8,8,8,8,9,10,10中,中位数为8;众数为8;二班的平均分=(10+6+6+9+10+4+5+7+10+8)÷10=7.5.(2)一班的成绩更好,理由一:一班的平均分比二班高;理由二:一班成绩的中位数比二班高.(答案不唯一,合理即可)【点睛】本题考查了中位数、众数、平均数及方差的知识,正确运用相关知识是解决问题的关键.25、(1)见解析;(2)①;②D【解析】
(1)由四边形ABCD是平行四边形可得AD∥BC,AO=CO,根据“AAS”证明△AOE≌△COF,可得OE=OF,从而可证四边形AFCE是平行四边形;(2)①作AH⊥BC于点H,根据锐角三角函数的知识即可求出AH的值;②根据图形结合平行四边形、矩形、菱形的判定逐个阶段进行判断即可.【详解】(1)证明:在中,对角线AC,BD相交于点O.∴,.∴,.∴.∴.∵,,∴四边形AFCE是平行四边形.(2)①作AH⊥BC于点H,∵AD∥BC,∠DAC=60°,∴∠ACF=∠DAC=60°,∴AH=AC·sin∠ACF=,∴BC上的高h=;②在整个运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44774-2024汽车信息安全应急响应管理规范
- 2024年度桥梁拆除工程承包合同
- 2024年度知识产权许可合同许可项目与许可费用
- 2024年度电商平台物流配送合同
- 2024年度智能家居产品买卖及安装合同2篇
- 《铁路知识学习材料》课件
- 2024年度技术开发合作合同:科技公司与研发团队共同开展新技术研究的协议
- 2024年度手机销售合同市场推广及售后服务
- 工业网络控制技术 课件 项目3 简单CPU通信应用
- 2024年度环保科技公司污染治理合同3篇
- 处方点评与不合理用药分析
- 金融科技与银行业的数字化转型与创新实践案例分享
- 阅读素养:培养学生良好的阅读习惯和能力
- 区块链技术在旅游行业中的应用培训
- 数字媒体艺术大学生职业生涯规划
- 门式起重机方案
- 设备技改方案范文
- 人工智能在医疗健康中的应用案例
- 危化品运输安全监测与报警系统
- 跑团活动方案
- 2024年实验中学减负工作实施方案
评论
0/150
提交评论