版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省江阴市周庄中学2024年八年级数学第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.30° B.40° C.50° D.65°2.矩形的对角线一定具有的性质是()A.互相垂直 B.互相垂直且相等C.相等 D.互相垂直平分3.一个矩形的围栏,长是宽的2倍,面积是,则它的宽为()A. B. C. D.4.若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.05.如图,将等腰直角三角形ABC绕点A逆时针旋转15度得到ΔAEF,若AC=,则阴影部分的面积为(
)A.1 B. C. D.6.下列式子中一定是二次根式的是()A. B. C. D.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形8.如图,直线与的交点的横坐标为,则关于的不等式的整数解为().A. B.C. D.9.已知函数y=(k-3)x,y随x的增大而减小,则常数k的取值范围是()A.k>3 B.k<3 C.k<-3 D.k<010.以下列各组数为边长,能组成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,6 D.1,,2二、填空题(每小题3分,共24分)11.在式子中,x的取值范围是__________________.12.若数使关于的不等式组有且只有四个整数解,的取值范围是__________.13.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当C点落在直线y=2x-6上时,线段BC扫过的区域面积为________.14.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.15.从A,B两题中任选一题作答:A.如图,在ΔABC中,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交与点M,N,作直线MN交AB于点E,交BC于点F,连接AF。若AF=6,FC=4,连接点E和AC的中点G,则EG的长为__.B.如图,在ΔABC中,AB=2,∠BAC=60°,点D是边BC的中点,点E在边AC上运动,当DE平分ΔABC的周长时,DE的长为__.16.如图,在矩形ABCD中,AB=6,AD=4,过矩形ABCD的对角线交点O作直线分别交CD、AB于点E、F,连接AE,若△AEF是等腰三角形,则DE=______.17.如图,在中,,,的面积为8,则四边形的面积为______.18.已知函数,当时,函数值的取值范围是_____________三、解答题(共66分)19.(10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图(图中的数字表示每一级台阶的高度,单位cm).已知数据15、16、16、14、14、15的方差S甲2=,数据11、15、18、17、10、19的方差S乙2=.请你用学过的统计知识(平均数、中位数、方差和极差)通过计算,回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.20.(6分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.(1)甲网店销售的商品的成本为30元/件,网上标价为80元/件.“双十一”购物活动当天,甲网店连续两次降价销售商品吸引顾客,问该店平均每次降价率为多少时,才能使商品的售价为39.2元/件?(2)乙网店销售一批名牌衬衫,平均每天销售20件,每件盈利40元,为了扩大销售,增加盈利减少库存,商场决定采取适当的降价措施,经调查发现,如果每件降价1元,则每天可多售2件.商场若想每天盈利1200元,每件衬衫应降价多少元?21.(6分)如图,在平面内,菱形ABCD的对角线相交于点O,点O又是菱形B1A1OC1的一个顶点,菱形ABCD≌菱形B1A1OC1,AB=BD=1.菱形B1A1OC1绕点O转动,求两个菱形重叠部分面积的取值范围,请说明理由.22.(8分)先化简,再求值:,在﹣2,0,1,2四个数中选一个合适的代入求值.23.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)24.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.25.(10分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)当∠BAG=30°,且AB=2时,求EF-FG的值.26.(10分)如图,已知直角梯形,,,过点作,垂足为点,,,点是边上的一动点,过作线段的垂直平分线,交于点,并交射线于点.(1)如图1,当点与点重合时,求的长;(2)设,,求与的函数关系式,并写出定义域;(3)如图2,联结,当是等腰三角形时,求的长.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°-2∠ACC′=180°-2×65°=50°,∴∠CAC′=∠BAB′=50°故选C.2、C【解析】
根据矩形的性质即可判断.【详解】因为矩形的对角线相等且互相平分,所以选项C正确,故选C.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.3、A【解析】
设宽为xm,则长为2xm,根据矩形的面积公式列出方程即可.【详解】解:设宽为xm,则长为2xm,依题意得:∴∵∴故选:A【点睛】本题考查了一元二次方程的应用,利用矩形的面积公式列出方程是解决本题的关键.4、A【解析】
直接利用分式的值为零则分子为零进而得出答案.【详解】∵分式的值为0,∴x1﹣4=0,解得:x=1或﹣1.故选A.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.5、C【解析】
利用旋转得出∠DAF=30°,就可以利用直角三角形性质,求出阴影部分面积.【详解】解:如图.设旋转后,EF交AB与点D,因为等腰直角三角形ABC中,∠BAC=90°,又因为旋转角为15°,所以∠DAF=30°,因为AF=AC=,所以DF=1,所以阴影部分的面积为.故选:C.6、A【解析】
一般地,我们把形如(a≥0)的式子叫做二次根式,据此进行判断即可.【详解】A.,是二次根式;B.中,根指数为3,故不是二次根式;C.中,-2<0,故不是二次根式;D.中,x不一定是非负数,故不是二次根式;故选A.【点睛】本题主要考查了二次根式的定义,解决问题的关键是理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.7、D【解析】
根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项不符合题意;B.根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项不符合题意;C.根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项不符合题意;D.根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项符合题意;故选:D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.8、D【解析】
满足不等式-x+m>nx+4n>0就是直线y=-x+m位于直线y=nx+4n的上方且位于x轴的上方的图象,据此求得自变量的取值范围即可.【详解】当时,对于,则.故的解集为.与的交点的横坐标为,观察图象可知的解集为.的解集为.为整数,.【点睛】此题考查一次函数与一元一次不等式,掌握运算法则是解题关键9、B【解析】
根据一次项系数小于0时,y随x的增大而减小,即可解题.【详解】解:由题可知k-3<0,解得:k<3,故选B.【点睛】本题考查了一次函数的增减性,属于简单题,熟悉概念是解题关键.10、D【解析】
根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.【详解】解:A、12+22=5≠32,故不符合题意;B、22+32=13≠42,故不符合题意;C、32+42=25≠62,故不符合题意;D、12+=4=22,符合题意.故选D.【点睛】本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.二、填空题(每小题3分,共24分)11、x≥2【解析】分析:根据被开方式是非负数列不等式求解即可.详解:由题意得,x-2≥0,x≥2.故答案为:x≥2.点睛:本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.12、【解析】
此题可先根据一元一次不等式组解出x的取值,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.【详解】解不等式①得,x<5,解不等式②得,x≥2+2a,由上可得2+2a≤x<5,∵不等式组恰好只有四个整数解,即1,2,3,4;∴0<2+2a≤1,解得,.【点睛】此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的取值范围,然后根据不等式组恰好只有四个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13、5【解析】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=1.∵∠CAB=90°,BC=3,∴AC=4,∴A′C′=4.∵点C′在直线y=4x﹣6上,∴4x﹣6=4,解得x=3.即OA′=3,∴CC′=3﹣1=4,∴S▱BCC′B′=4×4=5(cm4).即线段BC扫过的面积为5cm4.故答案为5.14、1【解析】
由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,∵E为BC的中点,AC⊥AB,∴AE=12BC=1故答案为:1.【点睛】本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.15、A.5B.【解析】
A.由作法知MN是线段AB的垂直平分线,所以BF=AF=6,然后根据EG是三角形ABC的中位线求解即可;B.延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.由ED平分ΔABC的周长,可知EB′=EC,从而DE为ΔCBB′的中位线,由等腰三角形的性质求出∠B=∠B′=30°,从而BF=,进而可求出DE的长.【详解】A.由尺规作图可得直线MN为线段AB的垂直平分线,∴BF=AF=6,E为AB中点,∵点G为AC中点,∴EG为ΔABC的中位线,∴EG∥BC且EG=BC,∵BF+FC=10,∴EG=5;B.如图所示,延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.∵ED平分ΔABC的周长,∴AB+AE+BD=EC+DC.∵BD=DC,∴AB+AE=EC.∵AB=AB′,∴EB′=EC,∴DE为ΔCBB′的中位线.∵∠BAC=60°,∴ΔBAB′为顶角是120°的等腰三角形,∴∠B=∠B′=30°,∴AF=1,∴BF=,∴BB′=2,∴ED=.故答案为:A.5;B.【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,三角形中位线的性质,等腰三角形的性质、勾股定理,掌握三角形中位线定理、正确作出辅助线是解题的关键.16、或1【解析】
连接AC,如图1所示:由矩形的性质得到∠D=90°,AD=BC=4,OA=OC,AB∥DC,求得∠OAF=∠OCE,根据全等三角形的性质得到AF=CE,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CE=x,则DE=6-x,根据勾股定理即可得到结论;②当AE=EF时,作EG⊥AF于G,如图1所示:设AF=CE=x,则DE=6-x,AG=x,列方程即可得到结论;③当AF=FE时,作FH⊥CD于H,如图3所示:设AF=FE=CE=x,则BF=6-x,则CH=BF=6-x,根据勾股定理即可得到结论.【详解】解:连接AC,如图1所示:∵四边形ABCD是矩形,∴∠D=90°,AD=BC=4,OA=OC,AB∥DC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CE=x,则DE=6-x,在Rt△ADE中,由勾股定理得:41+(6-x)1=x1,解得:x=,即DE=;②当AE=EF时,作EG⊥AF于G,如图1所示:则AG=AE=DE,设AF=CE=x,则DE=6-x,AG=x,∴x=6-x,解得:x=4,∴DE=1;③当AF=FE时,作FH⊥CD于H,如图3所示:设AF=FE=CE=x,则BF=6-x,则CH=BF=6-x,∴EH=CE-CH=x-(6-x)=1x-6,在Rt△EFH中,由勾股定理得:41+(1x-6)1=x1,整理得:3x1-14x+51=0,∵△=(-14)1-4×3×51<0,∴此方程无解;综上所述:△AEF是等腰三角形,则DE为或1;故答案为:或1.【点睛】此题考查矩形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质,根据勾股定理得出方程是解题的关键,注意分类讨论.17、2【解析】
根据相似三角形的判定与性质,可得△ABC的面积,根据面积的和差,可得答案.【详解】解:∵DE∥BC,,
∴△ADE∽△ABC,,
∴=()2=,
∵△ADE的面积为8,
∴S△ABC=1.
S四边形DBCE=S△ABC-S△ADE=1-8=2,
故答案为:2.【点睛】本题考查相似三角形的判定与性质,利用相似三角形面积的比等于相似比的平方得出S△ABC=1是解题关键.18、【解析】
依据k的值得到一次函数的增减性,然后结合自变量的取值范围,得到函数值的取值范围即可.【详解】∵函数y=−3x+7中,k=−3<0,∴y随着x的增大而减小,当x=2时,y=−3×2+7=1,∴当x>2时,y<1,故答案为:y<1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(共66分)19、(1)相同点:两段台阶路台阶高度的平均数相同;不同点:两段台阶路台阶高度的中位数、方差和极差均不相同;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm(原平均数)使得方差为1.【解析】
(1)分别求出甲、乙两段台阶路的高度平均数、中位数、极差即可比较;(2)根据方差的性质解答;(3)根据方差的性质提出合理的整修建议.【详解】(1)(1)甲段台阶路的高度平均数=×(15+16+16+14+14+15)=15,乙段台阶路的高度平均数=×(11+15+18+17+11+19)=15;甲段台阶路的高度中位数是15,乙段台阶路的高度中位数是=16;甲段台阶路的极差是16-14=2,乙段台阶路的极差是19-11=8,∴相同点:两段台阶路台阶高度的平均数相同.不同点:两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)整修建议:每个台阶高度均为15cm(原平均数)使得方差为1.【点睛】本题考查的是平均数、方差,掌握算术平均数的计算公式、方差的计算公式是解题的关键.20、(1);(2)20元【解析】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)设每件衬衫应降价y元,则每件盈利(40-y)元,每天可以售出(20+2y),所以此时商场平均每天要盈利(40-y)(20+2y)元,根据商场平均每天要盈利=1200元,为等量关系列出方程求解即可.【详解】解:(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,
根据题意得:80(1-x)2=39.2,
解得:x1=0.3=30%,x2=1.7(不合题意,舍去).
答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.(2)设每件衬衫应降价y元,则每件盈利(40-y)元,每天可以售出(20+2y),
由题意,得(40-y)(20+2y)=1200,
即:(y-10)(y-20)=0,
解得y1=10,y2=20,
为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,
所以,若商场平均每天要盈利12O0元,每件衬衫应降价20元;【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系列出方程求解,正确列出一元二次方程是解题的关键.21、≤s.【解析】
分别求出重叠部分面积的最大值,最小值即可解决问题【详解】如图1中,∵四边形ABCD是菱形,∴AB=AD,∵AB=BD,∴AB=BD=AD=1,∴△ABD是等边三角形,当AE=EB,AF=FD时,重叠部分的面积最大,最大面积=S△ABD=××12=,如图2中,当OA1与BC交于点E,OC1交AB与F时,作OG⊥AB与G,OH⊥BC于H.易证△OGF≌△OHE,∴S四边形BEOF=S四边形OGBH=×=,观察图象图象可知,在旋转过程中,重叠部分是三角形时,当点E与B重合,此时三角形的面积最小为,综上所述,重叠部分的面积S的范围为≤s≤.【点睛】本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布22、,1.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.试题解析:原式=(==2(x+4)当x=1时,原式=1.23、不能通过,理由见解析【解析】
直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.【详解】不能通过.如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.3m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.5m,∵∠ECA=60°,∠CGF=30°∴CG=2CF=3m,∴GF=≈2.55(m),∵2.55<3∴这辆货车在不碰杆的情况下,不能从入口内通过.【点睛】此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.24、(1)证明见解析;(2)证明见解析.【解析】分析:(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.详解:(1)∵BE=DF,∴BE-EF=DF-EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,∵AD=BC,DE=BF,∴Rt△ADE≌Rt△CBF(HL);(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.点睛:本题考查了全等三角形的判定和性质,平行四边形的判定和性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【初三化学人教版】7.2.1燃料的合理利用与开发
- 【初三化学人教版】3.3元素
- 妇科围手术期的预见性护理
- 湖北大学知行学院《投资学》2022-2023学年第一学期期末试卷
- 湖北大学知行学院《构成基础》2021-2022学年第一学期期末试卷
- 《太阳图说智盈》课件
- 2024房屋建筑抗震加固工程施工合同示本
- 2024项目居间合同协议书范本
- 2024租房合同范本房东版
- 孕34周先兆早产的护理
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 网站推广引流优化方案
- MOOC 财务会计Ⅰ-中国石油大学(北京) 中国大学慕课答案
- 人教版小学数学计算去括号练习100题及答案
- (高清版)TDT 1075-2023 光伏发电站工程项目用地控制指标
- 处方点评与不合理用药分析
- 金融科技与银行业的数字化转型与创新实践案例分享
- 阅读素养:培养学生良好的阅读习惯和能力
- 区块链技术在旅游行业中的应用培训
- 设备技改方案范文
- 疼痛科岗位职责说明(共8篇)
评论
0/150
提交评论