版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年浙江省上杭县数学八年级下册期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若一个多边形的内角和为360°,则这个多边形的边数是(
)A.3
B.4
C.5
D.62.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等 B.两条对角线相等C.四个内角都是直角 D.每一条对角线平分一组对角3.如图,四边形中,与不平行,分别是的中点,,,则的长不可能是()A.1.5 B.2 C.2.5 D.34.若A(2,y1),B(3,y2)是一次函数y=-3x+1的图象上的两个点,则y1与y2的大小关系是()A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定5.故宫是世界上现存规模最大,保存最完整的宫殿建筑群.下图是利用平面直角坐标系画出的故宫的主要建筑分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向,建立平面直角坐标系,有如下四个结论:①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5);②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,3);③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,1);④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6).上述结论中,所有正确结论的序号是()A.①② B.①③ C.①④ D.②③6.将一张矩形纸片沿一组对边和的中点连线对折,对折后所得矩形恰好与原矩形相似,若原矩形纸片的边,则的长为()A. B. C. D.27.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm8.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75° B.45° C.60° D.30°9.在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分 B.87.6分 C.88分 D.88.5分10.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C.5 D.4二、填空题(每小题3分,共24分)11.若一次函数y=kx+1(k为常数,0)的图象经过第一、二、四象限,则k的取值范围是_______________.12.矩形、菱形和正方形的对角线都具有的性质是_____.13.如图,正方形和正方形的边长分别为3和1,点、分别在边、上,为的中点,连接,则的长为_________.14.如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则OC=_____.15.等腰三角形的一个外角为100︒,则这个等腰三角形的顶角为_________.16.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积为2,则k的值为______________.17.已知一次函数的图象过点(3,5)与点(-4,-9),则这个一次函数的解析式为____________.18.数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.三、解答题(共66分)19.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)证明:△ACB≌△EFB;(2)求证:四边形ADFE是平行四边形.20.(6分)如图,一次函数y=kx+b的图象经过(2,4)、(0,2)两点,与x轴相交于点C.求:(1)此一次函数的解析式;(2)△AOC的面积.21.(6分)已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量.22.(8分)如图,是的中线,是线段上一点(不与点重合).交于点,,连接.(1)如图1,当点与重合时,求证:四边形是平行四边形;(2)如图2,当点不与重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长交于点,若,且,求的度数.23.(8分)如图,在△ABC中,∠ACB=105°,AC边上的垂直平分线交AB边于点D,交AC边于点E,连结CD.(1)若AB=10,BC=6,求△BCD的周长;(2)若AD=BC,试求∠A的度数.24.(8分)解方程:(1);(2)(x﹣2)2=2x﹣1.25.(10分)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.26.(10分)如图,,分别表示使用一种白炽灯和一种节能灯的费用(费用灯的售价电费,单位:元)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是小时,照明效果一样.(1)根据图象分别求出,的函数表达式;(2)小亮认为节能灯一定比白炽灯省钱,你是如何想的?
参考答案一、选择题(每小题3分,共30分)1、B【解析】
利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)×180°=360°,解得n=4;故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.2、D【解析】
菱形具有平行四边形的全部性质,故分析ABCD选项,添加一个条件证明平行四边形为菱形即为菱形具有而平行四边形不具有的性质,即可解题.【详解】解:平行四边形的对角线互相平分,对边相等,
且菱形具有平行四边形的全部性质,
故A、B、C选项错误;
对角线平分一组对角的平行四边形是菱形,故D选项正确.
故选D.【点睛】本题考查了平行四边形的邻角互补、对角线互相平分,对角相等的性质,菱形每条对角线平分一组对边的性质,本题中熟练掌握菱形、平行四边形的性质是解题的关键.3、D【解析】
连接BD,取BD的中点G,连接MG、NG,根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2MG,DC=2NG,再根据三角形的任意两边之和大于第三边得出MN<(AB+DC),即可得出结果.【详解】解:如图,连接BD,取BD的中点G,连接MG、NG,∵点M,N分别是AD、BC的中点,∴MG是△ABD的中位线,NG是△BCD的中位线,∴AB=2MG,DC=2NG,∴AB+DC=2(MG+NG),由三角形的三边关系,MG+NG>MN,∴AB+DC>2MN,∴MN<(AB+DC),∴MN<3;故选:D.【点睛】本题考查了三角形的中位线定理,三角形的三边关系;根据不等关系考虑作辅助线,构造成以MN为一边的三角形是解题的关键.4、C【解析】
先根据一次函数的解析式判断出函数的增减性,再根据1<3即可得出结论.【详解】解:∵一次函数y=-3x+1中,k=-3<0,∴y随着x的增大而减小.∵A(1,y1),B(3,y1)是一次函数y=-3x+1的图象上的两个点,1<3,∴y1>y1.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.5、C【解析】
根据各结论所给两个点的坐标得出原点的位置及单位长度从而得到答案.【详解】①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5),正确;②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,2.5),错误;③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,2),错误;④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6),正确,故选:C.【点睛】此题考查平面直角坐标系中用点坐标确定具体位置,由给定的点坐标确定原点及单位长度是解题的关键.6、C【解析】
根据相似多边形对应边的比相等,设出原来矩形的长,就可得到一个方程,解方程即可求得.【详解】解:根据条件可知:矩形AEFB∽矩形ABCD,∴,设AD=BC=x,AB=1,则AE=x.则,即:x2=1.∴x=或﹣(舍去).故选:C.【点睛】本题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键.7、A【解析】
由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.【详解】根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠EDA,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC﹣EC=8﹣6=1.故选:A.【点睛】本题考查了平行四边形的性质的应用,及等腰三角形的判定,属于基础题.8、C【解析】
首先连接AC,由四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,易得△ABC与△ACD是等边三角形,即可求得∠B=∠D=60°,继而求得∠BAD,∠BAE,∠DAF的度数,则可求得∠EAF的度数.【详解】解:连接AC,∵AE⊥BC,AF⊥CD,且E、F分别为BC、CD的中点,∴AB=AC,AD=AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴AB=BC=AC,AC=CD=AD,∴∠B=∠D=60°,∴∠BAE=∠DAF=30°,∠BAD=180°﹣∠B=120°,∴∠EAF=∠BAD﹣∠BAE﹣∠DAF=60°.故选C.【点睛】此题考查了菱形的性质、线段垂直平分线的性质以及等边三角形的判定与性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.9、B【解析】
根据加权平均数的计算方法进行计算即可得出答案.故选B.【详解】解:(分).【点睛】本题考查了加权平均数.理解“权”的含义是解题的关键.10、A【解析】
根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】解:∵四边形ABCD是菱形,设AB,CD交于O点,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=×AC×BD=AB×DH,∴×8×6=5×DH,∴DH=,故选A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=×AC×BD=AB×DH是解此题的关键.二、填空题(每小题3分,共24分)11、k<1【解析】
根据一次函数图象所经过的象限确定k的符号.【详解】解:∵一次函数y=kx+1(k为常数,k≠1)的图象经过第一、二、四象限,
∴k<1.
故填:k<1.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限.k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交.b=1时,直线过原点;b<1时,直线与y轴负半轴相交.12、对角线互相平分【解析】
先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.【详解】解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.故答案为对角线互相平分.【点睛】本题主要考查了矩形、菱形、正方形的性质,解题的关键是熟知三者对角线的性质.13、【解析】
延长GE交AB于点O,作PH⊥OE于点H,则PH是△OAE的中位线,求得PH的长和HG的长,在Rt△PGH中利用勾股定理求解.【详解】解:延长GE交AB于点O,作PH⊥OE于点H.
则PH∥AB.
∵P是AE的中点,
∴PH是△AOE的中位线,
∴PH=OA=×(3-1)=1.
∵直角△AOE中,∠OAE=45°,
∴△AOE是等腰直角三角形,即OA=OE=2,
同理△PHE中,HE=PH=1.
∴HG=HE+EG=1+1=2.
∴在Rt△PHG中,PG=故答案是:.【点睛】本题考查了正方形的性质、勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.14、1【解析】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,∠BAD=90°,∵∠ADB=30°,∴AC=BD=2AB=8,∴OC=AC=1.故答案为1.点睛:此题考查了矩形的性质、含30°角的直角三角形的性质.熟练掌握矩形的性质,注意掌握数形结合思想的应用.15、12.【解析】
因为题中没有指明该外角是顶角的外角还是底角的外角,所以应该分两种情况进行讨论.【详解】解:当100°的角是顶角的外角时,顶角的度数为180°-100°=80°;
当100°的角是底角的外角时,底角的度数为180°-100°=80°,所以顶角的度数为180°-2×80°=20°;∴顶角的度数为80°或20°.故答案为80°或20°.【点睛】本题考查等腰三角形的性质,三角形内角和定理及三角形外角性质等知识;分情况进行讨论是解答问题的关键.16、1【解析】
设反比例函数的解析式是:y=,设A的点的坐标是(m,n),则AB=m,OB=n,mn=k.根据三角形的面积公式即可求得mn的值,即可求得k的值.【详解】设反比例函数的解析式是:y=,设A的点的坐标是(m,n).
则AB=m,OB=n,mn=k.
∵△ABP的面积为2,
∴AB•OB=2,即mn=2
∴mn=1,则k=mn=1.
故答案是:1.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握过双曲线上的任意一点分别一条坐标轴作垂线,连接点与原点,与坐标轴围成三角形的面积是|k|.17、【解析】
设一次函数的解析式为:,利用待定系数法把已知点的坐标代入解析式,解方程组即可得答案.【详解】解:设一次函数的解析式为:,解得:所以这个一次函数的解析式为:故答案为:【点睛】本题考查的是利用待定系数法求解一次函数的解析式,掌握待定系数法是解题的关键.18、41,3【解析】试题分析:根据题意可知原数组的平均数为,方差为=3,然后由题意可得新数据的平均数为,可求得方程为.故答案为:41,3.三、解答题(共66分)19、(1)见详解;(2)见详解.【解析】
(1)由△ABE是等边三角形可知:AB=BE,∠EBF=60°,于是可得到∠EFB=∠ACB=90°,∠EBF=∠ABC,接下来依据AAS证明△ABC≌△EBF即可;(2)由△ABC≌△EBF可得到EF=AC,由△ACD是的等边三角形进而可证明AC=AD=EF,然后再证明∠BAD=90°,可证明EF∥AD,故此可得到四边形EFDA为平行四边形.【详解】解:(1)证明:∵△ABE是等边三角形,EF⊥AB,∴∠EBF=60°,AE=BE,∠EFB=90°.又∵∠ACB=90°,∠ABC=60°,∴∠EFB=∠ACB,∠EBF=∠ABC.∵BE=BA,∴△ABC≌△EBF(AAS).(2)证明:∵△ABC≌△EBF,∴EF=AC.∵△ACD是的等边三角形,∴AC=AD=EF,∠CAD=60°,又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,∴∠BAD=∠BAC+∠CAD=90°,∴∠EFA=∠BAD=90°,∴EF∥AD.又∵EF=AD,∴四边形EFDA是平行四边形.【点睛】本题主要考查了平行四边形的判定、全等三角形的性质和判定、等边三角形的性质,解题的关键是掌握证明全等三角形的判定方法和证明平行四边形的判定方法.20、(1)y=x+2;(2)1【解析】
(1)由图可知、两点的坐标,把两点坐标代入一次函数即可求出的值,进而得出结论;(2)由点坐标可求出的长再由点坐标可知的长,利用三角形的面积公式即可得出结论.【详解】解:(1)由图可知、,,解得,故此一次函数的解析式为:;(2)由图可知,,,,,.答:的面积是1.【点睛】此题考查的是待定系数法求一次函数的解析式及一次函数图象上点的坐标特点,先根据一次函数的图象得出、、三点的坐标是解答此题的关键.21、(1)y=6x﹣100;(2)1吨【解析】
(1)设y关于x的函数关系式y=kx+b,然后利用待定系数法求一次函数解析式解答;(2)把水费620元代入函数关系式解方程即可.【详解】(1)设y关于x的函数关系式y=kx+b,则:解得:,所以,y关于x的函数关系式是y=6x﹣100;(2)由图可知,当y=620时,x>50,所以,6x﹣100=620,解得:x=1.答:该企业2018年10月份的用水量为1吨.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.22、(1)见解析;(2)成立,见解析;(3).【解析】
(1)先判断出∠ECD=∠ADB,进而判断出△ABD≌△EDC,即可得出结论;(2)先判断出四边形DMGE是平行四边形,借助(1)的结论即可得出结论;(3)先判断出MI∥BH,MI=BH,进而利用直角三角形的性质即可得出结论.【详解】解:(1)∵,∴,∵,∴,∵是的中线,且与重合,∴,∴,∴,∵,∴四边形是平行四边形;(2)结论成立,理由如下:如图2,过点作交于,∵,∴四边形是平行四边形,∴,且,由(1)知,,,∴,,∴四边形是平行四边形;(3)如图3取线段的中点,连接,∵,∴是的中位线,∴,,∵,且,∴,,∴.【点睛】此题是四边形综合题,主要考查了三角形的中线,中位线的性质和判定,平行四边形的平行和性质,直角三角形的性质,正确作出辅助线是解绑的关键.23、(1)16;(2)25°.【解析】
根据线段垂直平分线的性质,可得CD=AD,根据三角形的周长公式,可得答案;根据线段垂直平分线的性质,可得CD=AD,根据等腰三角形的性质,可得∠B与∠CDB的关系,根据三角形外角的性质,可得∠CDB与∠A的关系,根据三角形内角和定理,可得答案.【详解】解:(1)∵DE是AC的垂直平分线,∴AD=CD.∵C△BCD=BC+BD+CD=BC+BD+AD=BC+AB,又∵AB=10,BC=6,∴C△BCD=16;(2)∵AD=CD∴∠A=∠ACD,设∠A=x,∵AD=CB,∴CD=CB,∴∠CDB=∠CBD.∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=2x,∵∠A、∠B、∠ACB是三角形的内角,∵∠A+∠B+∠ACB=180°,∴x+2x+105°=180°,解得x=25°∴∠A=25°.【点睛】本题考查线段垂直平分线的性质.24、(1)原方程无解;(2),.【解析】
(1)观察可得方程最简公分母为(x+1)(x-1),去分母,转化为整式方程求解,结果要检验.【详解】(1)去分母得:,整理得,解得x=1,检验知:x=1是增根,原方程无解;(2)方程整理得:,分解因式得:,即(x﹣2)(x﹣1)=0,可得x﹣2=0或x﹣1=0,解得:,.【点睛】此题考查了解分式方程,以及解一元二次方程,熟练掌握运算法则是解本题的关键.25、证明见解析.【解析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴工学院《交通港站与枢纽》2023-2024学年第一学期期末试卷
- 氯金酸行业相关投资计划提议范本
- 不锈钢焊接管行业相关投资计划提议
- 线上课程销售团队考核与薪酬激励方案
- 2024年卫浴设备买卖合同模板
- 艺术画廊会员特权方案
- 2024年产品销售担保撤销合同
- 给水管道冬季施工现场管理方案
- 2024年夫妻沟通技巧培训合同
- 2024年揭阳客运从业资格证考试试题
- 陕煤集团笔试题库及答案
- 33 《鱼我所欲也》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- Module 5 外研版英语九(上)模块主题写作详解与训练
- 高低压配电室运行巡查表
- 竹荪种植项目可行性研究报告写作范文
- starter安装教程
- 小班综合活动《出生的秘密》
- 制程品质保证权责及工作重点
- 运用思维导图优化初中数学课堂的实践与探究
- 中考物理专题21 欧姆定律的动态电路计算(原卷版)
评论
0/150
提交评论