版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年四川省成都市第第十八中学八年级数学第二学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.菱形ABCD中,如果E、F、G、H分别是各边中点,那么四边形EFGH的形状是()A.梯形 B.菱形 C.矩形 D.正方形2.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟 B.48分钟 C.46分钟 D.33分钟3.如图,正方形ABCD的边长为2,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO.则BE的长度为()A.3 B.102 C.5 D.4.如图,以原点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为()A.5 B.-5 C.5-2 D.2-55.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环方差/环请你根据表中数据选一人参加比赛,最合适的人选是()A.甲 B.乙 C.丙 D.丁6.下列根式中属最简二次根式的是()A. B. C. D.7.长春市某服装店销售夏季T恤衫,试销期间对4种款式T恤衫的销售量统计如下表:款式ABCD销售量/件1851该店老板如果想要了解哪种款式的销售量最大,那么他应关注的统计量是(
)A.平均数 B.众数 C.中位数 D.方差8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=10,则△EDB的周长是()A.4 B.6 C.8 D.109.若,则的值为()A.1 B.-1 C.-7 D.710.用配方法解方程x2﹣x﹣1=0时,应将其变形为()A.(x﹣)2= B.(x+)2=C.(x﹣)2=0 D.(x﹣)2=二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,AB=4,BC,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF于点H,连接AH.在转动的过程中,AH的最小值为_________.12.如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若,则________.13.若y与x的函数关系式为y=2x-2,当x=2时,y的值为_______.14.计算:的结果是_____.15.如图所示,△ABC中,AB=10cm,AC=8cm,∠ABC和∠ACB的角平分线交于点O,过点O作BC的平行线MN交AB于点M,交AC于点N,则△AMN的周长为____.16.在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.17.如图,将绕点按逆时针方向旋转得到,使点落在上,若,则的大小是______°.18.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处向正东方向行了100米到达B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC=_____米.三、解答题(共66分)19.(10分)如图,已知在中,对角线,,平分交的延长线于点,连接.(1)求证:.(2)设,连接交于点.画出图形,并求的长.20.(6分)解不等式组并在数轴上表示出不等式组的解集.21.(6分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.22.(8分)已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论.(1)如图(1)AB∥EF,BC∥DE,∠1与∠2的关系是:____________.(2)如图(2)AB∥EF,BC∥DE,∠1与∠2的关系是:____________(3)经过上述证明,我们可以得到一个真命题:如果_________,那么____________.(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角分别是多少度?23.(8分)在矩形ABCD中,对角线AC、BD交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°.(1)求证:△AOB是等边三角形;(2)求∠BOE的度数.24.(8分)计算:(1)(2)(3)先化简:再求值.,其中25.(10分)如图,矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形.26.(10分)根据指令[s,α](s≥0,0°<α<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度α,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系的坐标原点,且面对x轴正方向.(1)若给机器人下了一个指令[4,60°],则机器人应移动到点______;(2)请你给机器人下一个指令_________,使其移动到点(-5,5).
参考答案一、选择题(每小题3分,共30分)1、C【解析】分析:利用中位线的性质证明四边形EFGH为平行四边形;再根据菱形的对角线互相垂直,可证∠EHG=90°,从而根据矩形的判定:有一角为90°的平行四边形是矩形,得出菱形中点四边形的形状.详解:∵菱形ABCD中,如果E、F、G、H分别是各边的中点,∴HE∥GF∥AC,HE=GF=AC,∴四边形EFGH为平行四边形;又∵菱形的对角线互相垂直,∴∠EHG=90°,∴四边形EFGH的形状是矩形.故选:C.点睛:此题主要考查了菱形的性质,三角形中位线定理,矩形的判定.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.2、A【解析】试题分析:由图象可知校车在上坡时的速度为200米每分钟,长度为3600米;下坡时的速度为500米每分钟,长度为6000米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案.由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟.考点:一次函数的应用.3、C【解析】
利用正方形的性质得到OB=OC=22BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE【详解】∵正方形ABCD的边长为2,∴OB=OC=22BC=22×2=1,OB⊥∵CE=OC,∴OE=2,在Rt△OBE中,BE=12故选C.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.4、B【解析】
根据勾股定理列式求出x2,再利用平方根的相反数定义解答.【详解】由图可知,x2=12+22=5,
则x1=−5,x2=5(舍去).
故选:B.【点睛】考查了实数与数轴,主要是数轴上无理数的作法,需熟练掌握.5、A【解析】
根据方差的意义求解可得.【详解】∵四人的平均成绩相同,而甲的方差最小,即甲的成绩最稳定,
∴最合适的人选是甲,
故选:A.【点睛】本题考查方差,解答本题的关键是明确题意,掌握方差的意义.6、A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式7、B【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是对4种款式T恤衫的销售量情况作调查,所以应该关注销量的最多,故值得关注的是众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选B.【点睛】本题考查了统计的有关知识,熟知平均数、中位数、众数、方差的意义是解决问题的关键.8、D【解析】
先证出Rt△ACD≌Rt△AED,推出AE=AC,△DBE的周长=DE+EB+BD=AB,即可求解.【详解】解:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,
∴∠C=∠AED=90°,CD=DE,
在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED,
∴AE=AC,
∴△DBE的周长
=DE+EB+BD
=CD+DB+EB
=BC+EB
=AC+EB
=AE+EB
=AB
=10,
故选D.【点睛】本题考查了角平分线性质,全等三角形的性质和判定的应用,能求出AE=AC,CD=DE是解此题的关键,注意:角平分线上的点到角的两边的距离相等.9、D【解析】
首先根据非负数的性质,可列方程组求出x、y的值,进而可求出x-y的值.【详解】由题意,得:,
解得;
所以x-y=4-(-3)=7;
故选:D.【点睛】此题主要考查非负数的性质:非负数的和为1,则每个非负数必为1.10、D【解析】分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.详解:∵x2﹣x﹣1=0,∴x2﹣x=1,∴x2﹣x+=1+,∴(x﹣)2=.故选D.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.二、填空题(每小题3分,共24分)11、1﹣1【解析】
取OD的中点G,过G作GP⊥AD于P,连接HG,AG,依据∠ADB=30°,可得PGDG=1,依据∠DHO=90°,可得点H在以OD为直径的⊙G上,再根据AH+HG≥AG,即可得到当点A,H,G三点共线,且点H在线段AG上时,AH最短,根据勾股定理求得AG的长,即可得出AH的最小值.【详解】如图,取OD的中点G,过G作GP⊥AD于P,连接HG,AG.∵AB=4,BC=4AD,∴BD8,∴BD=1AB,DO=4,HG=1,∴∠ADB=30°,∴PGDG=1,∴PD,AP=3.∵DH⊥OF,∴∠DHO=90°,∴点H在以OD为直径的⊙G上.∵AH+HG≥AG,∴当点A,H,G三点共线,且点H在线段AG上时,AH最短,此时,Rt△APG中,AG,∴AH=AG﹣HG=11,即AH的最小值为11.故答案为11.【点睛】本题考查了圆和矩形的性质,勾股定理的综合运用,解决问题的关键是根据∠DHO=90°,得出点H在以OD为直径的⊙G上.12、220【解析】
先求出∠A与∠B的外角和,再根据外角和进行求解.【详解】∵∴∠A与∠B的外角和为360°-220°=140°,∵∠1,∠2,∠3是五边形ABCDE的3个外角,∴360°-140°=220°,故填:220°.【点睛】此题主要考查多边形的外角,解题的关键是熟知多边形的外角和为360°.13、2【解析】
将x=2代入函数解析式可得出y的值.【详解】由题意得:y=2×2−2=2.故答案为:2.【点睛】此题考查函数值,解题关键在于将x的值代入解析式.14、【解析】
逆用积的乘方运算法则以及平方差公式即可求得答案.【详解】===(5-4)2018×=+2,故答案为+2.【点睛】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.15、18【解析】
根据角平分线的定义、平行线的性质,及等角对等边可知OM=BM,ON=CN,则△AMN的周长=AB+AC可求.【详解】∵∠ABC和∠ACB的角平分线交于点O,∴∠ABO=∠CBO,∠ACO=∠BCO,∵BC∥MN,∴∠BOM=∠CBO,∠CON=∠BCO,∴∠BOM=∠ABO,∠CON=∠ACO,∴OM=BM,ON=CN,∴△AMN的周长=AM+AN+MN=AM+OM+AN+NC=AB+AC=18cm.故答案为:18.【点睛】此题考查角平分线的定义,平行线分线段成比例,解题关键在于得出OM=BM,ON=CN.16、【解析】
由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.【详解】∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.∴从中随机摸出一个球,摸到红球的概率是:故答案为:【点睛】此题考查概率公式,掌握运算法则是解题关键17、48°【解析】
根据旋转得出AC=DC,求出∠CDA,根据三角形内角和定理求出∠ACD,即可求出答案.【详解】∵将△ABC绕点C按逆时针方向旋转,得到△DCE,点A的对应点D落在AB边上,∴AC=DC,∵∠CAB=66°,∴∠CDA=66°,∴∠ACD=180°-∠A-∠CDA=48°,∴∠BCE=∠ACD=48°,故答案为:48°.【点睛】本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD的度数是解此题的关键.18、50【解析】
在图中两个直角三角形中,先根据已知角的正切函数,分别求出AC和BC,根据它们之间的关系,构建方程解答.【详解】由已知得,在Rt△PBC中,∠PBC=60°,PC=BCtan60°=BC,在Rt△APC中,∠PAC=30°,AC=PC=3BC=100+BC,解得,BC=50,∴PC=50(米),答:灯塔P到环海路的距离PC等于50米.故答案为:50【点睛】此题考查的知识点是解直角三角形的应用,关键明确解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.三、解答题(共66分)19、(1)证明见解析;(2).【解析】
(1)根据角平分线的性质可得∠ADE=∠CDE,再根据平行四边形的性质和平行线的性质可得∠CDE=∠AED,利用等量代换可得∠ADE=∠AED,根据等角对等边可得AD=AE;
(2)首先利用直角三角形的性质计算出BD,根据勾股定理可得AB长,然后再根据平行四边形的性质得出,,再利用勾股定理可得OA的值,进而可得答案.【详解】(1)证明:∵DE平分∠ADC,
∴∠ADE=∠CDE,
∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠CDE=∠AED,
∴∠ADE=∠AED,
∴AD=AE;
(2)解:在中,∠DAB=30°,AD=12,
∴,
∴,
∵四边形ABCD是平行四边形,
∴,,在中,,
∴.【点睛】本题主要考查了平行四边形的性质,直角三角形的性质,角平分线的性质以及勾股定理的应用,解题的关键是掌握平行四边形的对角线互相平分.20、-1≤x<2【解析】分析:根据一元一次不等式求解方法,分别求解不等式,并在数轴上表示,重合的部分即为不等式组解集在数轴上的表示.本题解析:,解不等式①得,x≥-1,解不等式②得,x<2,在数轴上表示如下:所以不等式组的解集是−1≤x<2.不等式组的整数解为-1,0,1,2.21、(1)y=5x+1.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有,解得,∴y=5x+1.(2)绿化面积是1200平方米时,甲公司的费用为61元,乙公司的费用为5500+4×200=6300元,∵6300<61∴选择乙公司的服务,每月的绿化养护费用较少.22、(1)∠1=∠1,证明见解析;(1)∠1+∠1=180°,证明见解析;(3)一个角的两边与另一个角的两边分别平行,这两个角相等或互补;(4)这两个角分别是30°,30°或70°,110°.【解析】
(1)根据两直线平行,内错角相等,可求出∠1=∠1;
(1)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠1=180°;
(3)由(1)(1)可得出结论;(4)由(3)可列出方程,求出角的度数.【详解】解:(1)AB∥EF,BC∥DE,∠1与∠1的关系是:∠1=∠1
证明:∵AB∥EF
∴∠1=∠BCE
∵BC∥DE
∴∠1=∠BCE
∴∠1=∠1.
(1)AB∥EF,BC∥DE.∠1与∠1的关系是:∠1+∠1=180°.
证明:∵AB∥EF
∴∠1=∠BCE
∵BC∥DE
∴∠1+∠BCE=180°
∴∠1+∠1=180°.
(3)经过上述证明,我们可以得到一个真命题:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
(4)解:设其中一个角为x°,列方程得x=1x-30或x+1x-30=180,
故x=30或x=70,
所以1x-30=30或110,
答:这两个角分别是30°,30°或70°,110°.【点睛】本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.23、(1)证明见解析;(2)∠BOE=75°.【解析】
(1)由矩形ABCD,得到OA=OB,根据AE平分∠BAD,∠CAE=15°,即可证明△AOB是等边三角形;(2)由等边三角形的性质,推出AB=OB,求出∠OBC的度数,根据等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创业项目推广佣金合同(2篇)
- 2022-2023学年山东省济宁市高一上学期期末考试地理试题(解析版)
- 2025装修施工管理合同模板
- 2025北京门头沟初三(上)期末数学真题试卷(含答案解析)
- 2025年眈脂剂项目可行性研究报告
- 立体车库配件生产项目可行性研究报告备案申请
- 2025年中国海上保险行业发展趋势预测及投资战略咨询报告
- 中国蜂蝎酒项目投资可行性研究报告
- 2019-2025年中国证书行业市场前景预测及投资战略研究报告
- 2025年化学气相沉积设备项目评估报告
- 2024年人教版八年级道德与法治上册期末考试卷(附答案)
- 信息科技大单元教学设计之七年级第三单元便捷的互联网服务
- 电梯井吊装方案
- 广东省广州市2023-2024高二上学期期末语文试题
- 新疆大学答辩模板课件模板
- 2024年土石方工程合同模板(三篇)
- 云南2025年中国工商银行云南分行秋季校园招聘650人笔试历年参考题库解题思路附带答案详解
- 中级水工闸门运行工技能鉴定理论考试题及答案
- 2024年兰州市城关区四年级数学第一学期期末统考模拟试题含解析
- 奋跃而上 飞速奔跑(2023年黑龙江牡丹江中考语文试卷议论文阅读题及答案)
- 记账实操-足浴店账务处理分录
评论
0/150
提交评论