版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年上海四团中学高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.过点的直线与圆有公共点,则直线的倾斜角的取值范围是(
)A.
B.
C.
D.参考答案:D2.已知集合,,则A∩B=(
)A.[-2,3] B.[3,4] C.[-2,4] D.(-2,3)参考答案:B【分析】分别解出集合A,B,再求两个集合的交集。【详解】由题解得,,则,故选B.【点睛】本题考查集合的交集,属于基础题。3.设命题甲:的解集是实数集R;命题乙:,则命题甲是命题乙成立的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件参考答案:B由题意得,命题甲的解集是实数集,则,所以命题甲是命题乙成立的必要不充分条件,故选C.考点:必要不充分条件的判定.4.圆柱的侧面展开图是一个面积为16π2的正方形,该圆柱内有一个体积为V的球,则V的最大值为(
)A. B. C. D.参考答案:A【分析】根据正方形的面积计算出圆柱的底面直径和高,由此求得圆柱内最大球的半径,进而求得体积.【详解】设圆柱的底面直径为,高为,则,解得.故圆柱的底面直径为,高为,所以圆柱内最大球的直径为,半径为,其体积为.故选A.【点睛】本小题主要考查圆柱侧面展开图有关计算,考查圆柱内的最大球的体积的求法,属于基础题.5.已知命题p:可表示焦点在x轴上的双曲线;命题q:若实数a,b满足a>b,则a2>b2.则下列命题中:①p∨q②p∧q③(¬p)∨q④(¬p)∧(¬q)真命题的序号为()A.① B.③④ C.①③ D.①②③参考答案:B【考点】命题的真假判断与应用;双曲线的简单性质.【分析】先分别判定命题p、命题q的真假,在根据复合命题的真值表判定.【解答】解:对于命题p:若可表示焦点在x轴上的双曲线,则3﹣a>0,a﹣5>0,a不存在,故命题p是假命题;对于命题q:若实数a,b满足a>b,则a2>b2或a2=b2或a2<b2,命题q为假命题;①p∨q为假,②p∧q为假,③(¬p)∨q为真,④(¬p)∧(¬q)为真;故选:B.6.若抛物线C:y2=4x上一点M(a,b)到焦点F的距离为5,以M为圆心且过点F的圆与y轴交于A,B两点,则|AB|=()A.4 B.6 C. D.8参考答案:B【分析】求得抛物线的焦点和准线方程,由抛物线的定义可得a=1=5,求得a,b,以及圆的半径,运用弦长公式计算可得所求值.【详解】抛物线C:y2=4x的焦点为(1,0),准线方程为x=﹣1,由抛物线的定义可得a+1=5,解得a=4,b=±4,以M(4,±4)为圆心且过点F的圆的半径为5,由圆心到y轴的距离为4,可得|AB|=26,故选:B.【点睛】本题考查抛物线的定义和方程、性质,以及圆的定义和弦长求法,考查方程思想和运算能力,属于基础题.7.函数为偶函数,且在单调递增,则的解(
)A.
B.C.
D.参考答案:A略8.函数y=的图象大致是()A. B. C. D.参考答案:D【考点】函数的图象.【分析】判断函数的奇偶性,利用特殊值判断函数值的即可.【解答】解:函数y=是奇函数,所以选项A,B不正确;当x=e时,y=>0,图象的对应点在第一象限,D正确;C错误.故选:D.9.若直线和x轴,y轴分别交于点A,B,以线段AB为边在第一象限内做等边△ABC,如果在第一象限内有一点使得△ABP和△ABC的面积相等,则m的值为A.
B.
C.
D.参考答案:C10.已知ABC中,A=30°,B=45°,b=,则a=()A.3 B.1 C.2 D.参考答案:B【考点】正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】由已知利用正弦定理即可求值得解.【解答】解:∵A=30°,B=45°,b=,∴由正弦定理可得:a===1.故选:B.【点评】本题主要考查了正弦定理在解三角形中的应用,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.为椭圆上的点,是其两个焦点,若,则的面积是
▲
.参考答案:略12.若随机变量,则.参考答案:13.在区间(0,1)上随机取两个数m,n,则关于x的一元二次方程有实根的概率为
参考答案:略14.,则
.参考答案:略15.若y=x3+x﹣2在P处的切线平行于直线y=7x+1,则点P的坐标是.参考答案:(,)或(﹣,)
考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:先求导函数,由导数的几何意义令导函数等于4建立方程,求出方程的解,即可求出切点的横坐标,代入原函数即可求出切点坐标.解答:解:由y=x3+x﹣2,求导数得y′=3x2+1,由已知得3x2+1=7,解之得x=±.当x=时,y=;当x=﹣时,y=.∴切点P0的坐标为(,)或(﹣,).故答案为:(,)或(﹣,).点评:本题考查利用导数求切点的坐标,利用导数值等于切线的斜率是解决问题的关键,属基础题.16.过双曲线的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于______.参考答案:2略17.函数的图象恒过定点A,若点A在直线上,其中,则的最小值为
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)当时,求的解集;(2)若恒成立,求实数a的取值范围.参考答案:(1);(2).【分析】(1)将代入函数的解析式,并将函数表示为分段函数,分段解出不等式,可得出所求不等式的解集;(2)分和两种情况,将函数的解析式表示为分段函数,求出函数的最小值,然后解出不等式可得出实数的取值范围.【详解】(1)当时,,当时,由,得;当时,由,得;当时,不等式无解.所以原不等式的解集为;(2)当时,;当时,.所以,由,得或,所以实数a的取值范围是.【点睛】本题考查绝对值不等式的解法以及绝不等式不等式恒成立问题,一般采用去绝对值的办法,利用分类讨论思想求解,考查分类讨论思想的应用,属于中等题.19.已知:复数与在复平面上所对应的点关于y轴对称,且(i为虚数单位),||=。(I)求的值;(II)若的虚部大于零,且(m,n∈R),求m,n的值。参考答案:(I)或(II)【分析】(I)设,得出的表达式,根据和列方程组,解方程组求得的值,进而求得的值.(II)根据(I)的结论确定的值.代入运算化简,根据复数相等的条件列方程组,解方程组求得的值.【详解】解:(I)设(x,y∈R),则=-x+yi,∵z1(1-i)=(1+i),||=,∴,∴或,即或
(II)∵的虚部大于零,∴,∴,则有,∴,∴。【点睛】本小题主要考查复数的概念,考查复数的模、复数相等、复数的虚部等知识,属于基础题.20.已知函数.(1)证明:函数在内存在唯一零点;(2)已知,若函数有两个相异零点,且(b为与x无关的常数),证明:.参考答案:(1)证明见解析;(2)证明见解析【分析】(1)先利用导数确定单调性,再利用零点存在定理证明结论,(2)先求,再结合恒成立转化证明,即需证,根据条件消,令,转化证,即需证,这个不等式利用导数易证.【详解】(1),令,则在上恒成立,所以,在上单调递减,,,根据零点存在定理得,函数在存在唯一零点,当时,,所以在存在唯一零点;(2)因为,,所以,不妨设,因为,所以,,所以,,因为,,而要求满足的b的最大值,所以只需证明.所以(*)令,则,所以(*),令,则,所以在上单调递增,即综上,.【点睛】本题考查利用导数研究函数零点以及利用导数证明不等式,考查综合分析论证能力,属难题.21.已知函数f(x)=x2﹣2ax﹣1+a,a∈R.(Ⅰ)若a=2,试求函数y=(x>0)的最小值;(Ⅱ)对于任意的x∈,不等式f(x)≤a成立,试求a的取值范围.参考答案:【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】函数的性质及应用.【分析】(Ⅰ)由y===x﹣4.利用基本不等式即可求得函数的最小值;(Ⅱ)由题意可得不等式f(x)≤a成立”只要“x2﹣2ax﹣1≤0在恒成立”.不妨设g(x)=x2﹣2ax﹣1,则只要g(x)≤0在恒成立.结合二次函数的图象列出不等式解得即可.【解答】解:(Ⅰ)依题意得y===x﹣4.因为x>0,所以x,当且仅当x=时,即x=1时,等号成立.所以y≥﹣2.所以当x=1时,y=的最小值为﹣2.…(Ⅱ)因为f(x)﹣a=x2﹣2ax﹣1,所以要使得“?x∈,不等式f(x)≤a成立”只要“x2﹣2ax﹣1≤0在恒成立”.不妨设g(x)=x2﹣2ax﹣1,则只要g(x)≤0在恒成立.因为g(x)=x2﹣2ax﹣1=(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年上海统计师(初级)考试题库(含基础和实务)
- 甘孜职业学院《工程机械设计》2023-2024学年第一学期期末试卷
- 七年级科学上册11.1生物的感觉11.1.1生物对环境变化的反应学案无答案牛津上海版
- 三年级数学上册6平移旋转和轴对称单元概述和课时安排素材苏教版
- 三年级数学上册四乘与除教案北师大版
- 三年级科学上册第三单元人与动物5动物世界第一课时教案首师大版
- 三年级科学下册第四单元磁铁第3课磁铁的两极教学材料教科版
- 计量设备培训课件
- 《米拉公寓建筑分析》课件
- 《弧形导台过站》课件
- 2024年版电商平台入驻商家服务与销售分成合同
- 蜜雪冰城合同范例
- 小红书种草营销师(初级)认证考试真题试题库(含答案)
- LPG液化气充装站介质分析操作规程 202412
- 养老院环境卫生保洁方案
- 中学学校装修改造工程施工组织设计方案
- 2024年WPS计算机二级考试题库350题(含答案)
- 2024年5G网络覆盖工程分包合同
- 2025届北京市海淀区交大附中高一物理第一学期期末复习检测试题含解析
- 天津市武清区2024-2025学年九年级上学期11月期中物理试题(无答案)
- 煤矿防治水细则解读
评论
0/150
提交评论