版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省九江市宁达私立中学高二数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列表:
文化程度与月收入列表
单位:人
月收入2000元以下月收入2000元及以上总计高中文化以上104555高中文化及以下203050总计3075105
由上表中数据计算得=6.109,请根据下表,估计有多大把握认为“文化程度与月收入有关系”(
)A.1%
B.99%
C.2.5%
D.97.5%参考答案:D2.在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:甲是中国人,还会说英语.乙是法国人,还会说日语.丙是英国人,还会说法语.丁是日本人,还会说汉语.戊是法国人,还会说德语.则这五位代表的座位顺序应为()A.甲丙丁戊乙 B.甲丁丙乙戊 C.甲乙丙丁戊 D.甲丙戊乙丁参考答案:D【考点】F4:进行简单的合情推理.【分析】这道题实际上是一个逻辑游戏,首先要明确解题要点:甲乙丙丁戊5个人首尾相接,而且每一个人和相邻的两个人都能通过语言交流,而且4个备选答案都是从甲开始的,因此,我们从甲开始推理.【解答】解:根据题干和答案综合考虑,运用排除法来解决,首先,观察每个答案中最后一个人和甲是否能够交流,戊不能和甲交流,因此,B,C不成立,乙不能和甲交流,A错误,因此,D正确.3.函数的图象.关于原点对称
.关于直线y=x对称
C.关于x轴对称
D.关于y轴对称参考答案:D4.若数列,,,…,,…是首项为,公比为的等比数列,则为(). (A)
(B)
(C)
(D)参考答案:C略5.若,数列和各自都成等差数列,则等于()A. B. C. D.参考答案:B略6.“4<k<10”是“方程+=1表示焦点在x轴上的椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】根据椭圆的定义以及集合的包含关系判断即可.【解答】解:∵方程+=1表示焦点在x轴上的椭圆,∴,解得:7<k<10,故“4<k<10”是“方程+=1表示焦点在x轴上的椭圆”的必要不充分条件,故选:B.7.若对于任意的实数x,有,则的值为()A.3 B.6 C.9 D.12参考答案:B试题分析:因为,所以,故选择B.考点:二项式定理.8.已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是(
)A.(0,) B.(,1) C.(1,2) D.(2,+∞)参考答案:B【考点】函数的零点.【专题】函数的性质及应用.【分析】画出函数f(x)、g(x)的图象,由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,数形结合求得k的范围.【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:KOA=,数形结合可得<k<1,故选:B.【点评】本题主要考查函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题.9.函数在下面哪个区间内是增函数(
)A.(,)
B.(,2)C.(,)
D.(2,3)参考答案:C略10.已知函数,则的大小关系是(
)A、
B、C、
D、参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.设变量x,y满足约束条件,则目标函数的最小值为_________.参考答案:312.已知椭圆的中心在原点,焦点在y轴上,是椭圆的两个焦点,为椭圆上的一个动点,若的周长为12,离心率,则此椭圆的标准方程为
.参考答案:略13.焦点在(﹣2,0)和(2,0),经过点(2,3)的椭圆方程为.参考答案:【考点】椭圆的简单性质.【分析】根据题意,由焦点的坐标分析可得其焦点在x轴上,且c=2,可以设其标准方程为:+=1,将点(2,3)坐标代入椭圆方程计算可得a2的值,即可得答案.【解答】解:根据题意,椭圆的焦点坐标为(﹣2,0)和(2,0),则其焦点在x轴上,且c=2,设其标准方程为:+=1,又由其经过点(2,3),则有﹣=1,解可得a2=16,则其标准方程为:;故答案为:.14.设圆圆.点A,B分别是圆C1,C2上的动点,P为直线上的动点,则的最小值为_________.参考答案:【分析】在直接坐标系中,画出两个圆的图形和直线的图象,根据圆的性质,问题就转化为|PC1|+|PC2|﹣R﹣r=|PC1|+|PC2|﹣7的最小值,运用几何的知识,作出C1关于直线y=x对称点C,并求出坐标,由平面几何的知识易知当C与P、C2共线时,|PC1|+|PC2|取得最小值,最后利用两点问题距离公式可以求出最小值.【详解】可知圆C1的圆心(5,﹣2),r=2,圆C2的圆心(7,﹣1),R=5,如图所示:对于直线y=x上的任一点P,由图象可知,要使|PA|+|PB|的得最小值,则问题可转化为求|PC1|+|PC2|﹣R﹣r=|PC1|+|PC2|﹣7的最小值,
即可看作直线y=x上一点到两定点距离之和的最小值减去7,又C1关于直线y=x对称的点为C(﹣2,5),由平面几何的知识易知当C与P、C2共线时,|PC1|+|PC2|取得最小值,即直线y=x上一点到两定点距离之和取得最小值为|CC2|∴|PA|+|PB|的最小值为=﹣7.【点睛】本题考查了求定直线上的动点分别到两个圆上的动点的距离之和最小值问题,考查了数形结合思想,利用圆的几何性质转化是解题的关键,利用对称思想也是本题解题的关键.15.已知随机变量X服从二项分布,X~B,则P(X=2)等于()A.
B.
C.
D.参考答案:D16.已知定义在上的函数满足,且的导函数,则不等式的解集为
.参考答案:17.如图是甲、乙两名同学进入高中以来5次体育测试成绩的茎叶图,则甲5次测试成绩的平均数与乙5次测试成绩的中位数之差是____.参考答案:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分13分)某个集团公司下属的甲、乙两个企业在2012年1月的产值都为a万元,甲企业每个月的产值与前一个月相比增加的产值相等,乙企业每个月的产值与前一个月相比增加的百分数相等,到2013年1月两个企业的产值再次相等.(1)试比较2012年7月甲、乙两个企业产值的大小,并说明理由;(2)甲企业为了提高产能,决定投入3.2万元买台仪器,并且从2013年2月1日起投入使用.从启用的第一天起连续使用,第n天的维修保养费为元(),求前n天这台仪器的日平均耗费(含仪器的购置费),并求日平均耗资最小时使用的天数?参考答案:(1)设从2012年1月到2013年1月甲企业每个月的产值分别为,乙企业每个月的产值分别为.………………1分由题意成等差数列,成等比数列,∴,.……………………2分∵,从而=,……………4分∴到7月份甲企业的产值比乙企业的产值要大.………5分(2)设一共使用了n天,n天的平均耗资=……………8分==(元).………10分当且仅当时,取得最小值,此时n=800,……………12分即日平均耗资最小时使用了800天.………………13分19.已知椭圆C:+=1(a>b>0),过椭圆C的上顶点与右顶点的直线L,与圆x2+y2=相切,且椭圆C的右焦点与抛物线y2=4x的焦点重合.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点O作两条互相垂直的射线与椭圆C分别交于A,B两点(其中O为坐标原点),求△OAB面积的最小值.参考答案:【考点】椭圆的简单性质.【分析】(Ⅰ)过椭圆C的上顶点与右顶点的直线L为=1,即bx+ay﹣ab=0.由直线L与圆x2+y2=相切相切,可得=.由抛物线y2=4x的焦点为F(1,0),可得c=1.即a2﹣b2=1,联立解出即可得出.(Ⅱ)当两射线与坐标轴重合时,S△OAB=.当两射线不与坐标轴重合时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),与椭圆方程联立,消去y,得(3+4k2)x2+8kmx+4m2﹣12=0.因为OA⊥OB,所以x1x2+y1y2=0,所以x1x2+(kx1+m)(kx2+m)=0.把根与系数的关系代入可得得7m2=12(k2+1),所以点O到直线AB的距离d==.因为OA⊥OB,所以OA2+OB2=AB2≥2OA?OB,当且仅当OA=OB时,取等号.由d?AB=OA?OB,得d?|AB|=|OA|?|OB|≤,即可得出.【解答】解:(Ⅰ)过椭圆C的上顶点与右顶点的直线L为=1,即bx+ay﹣ab=0.由直线L与圆x2+y2=相切相切,得=.①…因为抛物线y2=4x的焦点为F(1,0),所以c=1.…即a2﹣b2=1,代入①,得7a4﹣31a2+12=0,即(7a2﹣3)(a2﹣4)=0,解得a2=4,a2=(舍去).…所以b2=a2﹣1=3.故椭圆C的标准方程为=1.…(Ⅱ)当两射线与坐标轴重合时,S△OAB==.…当两射线不与坐标轴重合时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),与椭圆方程联立,消去y,得(3+4k2)x2+8kmx+4m2﹣12=0.∴x1+x2=,x1?x2=.…因为OA⊥OB,所以x1x2+y1y2=0,所以x1x2+(kx1+m)(kx2+m)=0.即(k2+1)x1x2+km(x1+x2)+m2=0.…∴(k2+1)﹣+m2=0.…整理,得7m2=12(k2+1),所以点O到直线AB的距离d===.…因为OA⊥OB,所以OA2+OB2=AB2≥2OA?OB,当且仅当OA=OB时,取等号.由d?AB=OA?OB,得d?|AB|=|OA|?|OB|≤,所以|AB|≥2d=,即弦AB的长度的最小值是.所以△OAB的最小面积为S△OAB=×=.综上,△OAB面积的最小值为.…20.直角坐标系中,已知动点P(x,y)到定点F(0,2)的距离与它到y=﹣1距离之差为1,(1)求点P的轨迹C(2)点A(3,1),P在曲线C上,求|PA|+|PF|的最小值,并求此时点P的坐标.参考答案:【考点】IW:与直线有关的动点轨迹方程.【分析】(1)设P(x,y),由两点间距离公式和点到直线的距离公式列出方程,由此能求出曲线C的方程;(2)要使|PA|+|PF|的值最小,则三点P,A,F三点共线,此时点P为直线AF与抛物线的交点即可【解答】解:(1)(1)设P(x,y),∵动点P(x,y)到定点F(0,2)的距离与它到y=﹣1距离之差为1,∴,整理得x2=8y∴点P的轨迹C是以原点为顶点,对称轴为y轴的抛物线.(2)如图,要使|PA|+|PF|的值最小,则三点P,A,F三点共线,此时点P为直线AF与抛物线的交点.直线AF方程:x+3y﹣6=0由得P(,)|PA|+|PF|的最小值为.21.(本小题12分)如图,四棱锥的底面是正方形,,点E在棱PB上.(Ⅰ)求证:平面;
(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.参考答案:【解法1】本题主要考查直线和平面垂直、平面与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力.(Ⅰ)∵四边形ABCD是正方形,∴AC⊥BD,∵,∴PD⊥AC,∴AC⊥平面PDB,∴平面.
……(5分)(Ⅱ)设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∴O,E分别为DB、PB的中点,
∴OE//PD,,又∵,
∴OE⊥底面ABCD,OE⊥AO,
在Rt△AOE中,,
∴,即AE与平面PDB所成的角的大小为.……(7分)【解法2】如图,以D为原点建立空间直角坐标系, 设则,(Ⅰ)∵,∴,∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,∴平面.……(5分)(Ⅱ)当且E为PB的中点时,,
设AC∩BD=O,连接OE,由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度10kv配电工程电力设施建设合同
- 报名表的模板
- 2025年牛津上海版九年级科学上册阶段测试试卷含答案
- 2025年度环保材料研发与生产合伙投资暗股协议书3篇
- 二零二五年度文化创意产业园区装修施工合同3篇
- 2024年沪科版七年级化学上册阶段测试试卷
- 2025年冀教版七年级科学下册阶段测试试卷
- 二零二五年度建筑室内外照明工程设计施工合同3篇
- 2025年西师新版七年级科学下册阶段测试试卷
- 二零二五年度化妆品品牌国内市场拓展合同3篇
- 零碳智慧园区解决方案
- 2025年林权抵押合同范本
- 2024年北师大版四年级数学上学期学业水平测试 期末卷(含答案)
- 2024年高考物理一轮复习讲义(新人教版):第七章动量守恒定律
- 浙江省宁波市慈溪市2023-2024学年高三上学期语文期末测试试卷
- 草学类专业生涯发展展示
- 法理学课件马工程
- 《玉米种植技术》课件
- 第47届世界技能大赛江苏省选拔赛计算机软件测试项目技术工作文件
- 2023年湖北省公务员录用考试《行测》答案解析
- M200a电路分析(电源、蓝牙、FM)
评论
0/150
提交评论