版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省利川都亭初级中学2023-2024学年数学九上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.用配方法解方程2x2-x-2=0,变形正确的是()A. B.=0 C. D.2.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合3.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某新能源汽车4s店的汽车销量自2018年起逐月增加.据统计,该店第一季度的汽车销量就达244辆,其中1月份销售汽车64辆.若该店1月份到3月份新能源汽车销售量的月平均增长率为x,则下列方程正确的是()A.64(1+x)2=244B.64(1+2x)=244C.64+64(1+x)+64(1+x)2=244D.64+64(1+x)+64(1+2x)=2444.已知二次函数y=x2﹣6x+m(m是实数),当自变量任取x1,x2时,分别与之对应的函数值y1,y2满足y1>y2,则x1,x2应满足的关系式是()A.x1﹣3<x2﹣3 B.x1﹣3>x2﹣3 C.|x1﹣3|<|x2﹣3| D.|x1﹣3|>|x2﹣3|5.如图,在中,中线相交于点,连接,则的值是()A. B. C. D.6.如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是()A.100° B.110° C.120° D.130°7.已知二次函数y=x2﹣2x+m(m为常数)的图象与x轴的一个点为(3,0),则关于x的一元二次方程x2﹣2x+m=0的两个实数根是()A.x1=﹣1,x2=3 B.x1=1,x2=3 C.x1=﹣1,x2=1 D.x1=3,x2=﹣58.如图,菱形的边的垂直平分线交于点,交于点,连接.当时,则()A. B. C. D.9.方程的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-110.下列事件属于随机事件的是()A.旭日东升 B.刻舟求剑 C.拔苗助长 D.守株待兔11.下列手机应用图标中,是中心对称图形的是()A. B. C. D.12.设,下列变形正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知二次函数的顶点为,且经过,将该抛物线沿轴向右平移,当它再次经过点时,所得抛物线的表达式为______.14.抛物线y=5(x﹣4)2+3的顶点坐标是_____.15.如图所示,在宽为,长为的矩形耕地上,修筑同样宽的三条路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为,道路的宽为_______16.双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是17.关于的方程有一个根,则另一个根________.18.二次函数的图象如图所示,对称轴为.若关于的方程(为实数)在范围内有实数解,则的取值范围是__________.三、解答题(共78分)19.(8分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE//BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.20.(8分)为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.分数段频数频率74.5~79.520.0579.5~84.5m0.284.5~89.5120.389.5~94.514n94.5~99.540.1(1)表中m=__________,n=____________;(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在_________分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.21.(8分)在,,.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当时,的值是,直线BD与直线CP相交所成的较小角的度数是.(2)类比探究如图2,当时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.22.(10分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.23.(10分)在一个不透明的口袋里有标号为的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.(1)下列说法:①摸一次,摸出一号球和摸出号球的概率相同;②有放回的连续摸次,则一定摸出号球两次;③有放回的连续摸次,则摸出四个球标号数字之和可能是.其中正确的序号是(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率,(用列表法或树状图)24.(10分)计算:|tan30°-l|+2sin60o-tan45°.25.(12分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线.(2)若⊙O的半径为3cm,∠C=30°,求图中阴影部分的面积.26.某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的m=________,n=________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为________°;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是________.
参考答案一、选择题(每题4分,共48分)1、D【解析】用配方法解方程2−x−2=0过程如下:移项得:,二次项系数化为1得:,配方得:,即:.故选D.2、B【解析】试题分析:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选B.考点:中心对称.3、C【分析】设该店1月份到3月份新能源汽车销售量的月平均增长率为x,等量关系为:1月份的销售量+1月份的销售量×(1+增长率)+1月份的销售量×(1+增长率)2=第一季度的销售量,把相关数值代入求解即可.【详解】设该店1月份到3月份新能源汽车销售量的月平均增长率为x,根据题意列方程:64+64(1+x)+64(1+x)2=1.故选:C.【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.4、D【分析】先利用二次函数的性质确定抛物线的对称轴为直线x=3,然后根据离对称轴越远的点对应的函数值越大可得到|x1-3|>|x2-3|.【详解】解:抛物线的对称轴为直线x=-=3,∵y1>y2,
∴点(x1,y1)比点(x2,y2)到直线x=3的距离要大,
∴|x1-3|>|x2-3|.
故选D.【点睛】本题考查二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.5、B【分析】BE、CD是△ABC的中线,可知DE是△ABC的中位线,于是有DE∥BC,△ODE∽△OCB,根据相似三角形的性质即可判断.【详解】解:∵BE、CD是△ABC的中线,∴DE是△ABC的中位线,
∴DE∥BC,DE=BC,
∴△DOE∽△COB,∴,故选:B.【点睛】本题考查了三角形的中位线定理,相似三角形的判定与性质,证明△ODE和△OBC相似是关键.6、B【分析】利用圆内接四边形对角互补的性质求解.【详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠A=180°﹣70°=110°.故选B.【点睛】本题考查圆内接四边形的性质,掌握圆内接四边形对角互补是解题关键.7、A【分析】利用抛物线的对称性确定抛物线与x轴的另一个点为(﹣1,0),然后利用抛物线与x轴的交点问题求解.【详解】解:∵抛物线的对称轴为直线x=﹣=1,而抛物线与x轴的一个点为(1,0),∴抛物线与x轴的另一个点为(﹣1,0),∴关于x的一元二次方程x2﹣2x+m=0的两个实数根是x1=﹣1,x2=1.故选:A.【点睛】本题考查了抛物线与轴的交点:把求二次函数,,是常数,与轴的交点坐标问题转化为解关于的一元二次方程.也考查了二次函数的性质.8、B【分析】连接BF,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF,根据等边对等角可得∠FBA=∠FAB,再根据菱形的邻角互补求出∠ABC,然后求出∠CBF,最后根据菱形的对称性可得∠CDF=∠CBF.【详解】解:如图,连接BF,
在菱形ABCD中,∠BAC=∠BAD=×100°=50°,
∵EF是AB的垂直平分线,
∴AF=BF,
∴∠FBA=∠FAB=50°,
∵菱形ABCD的对边AD∥BC,
∴∠ABC=180°-∠BAD=180°-100°=80°,
∴∠CBF=∠ABC-∠ABF=80°-50°=30°,
由菱形的对称性,∠CDF=∠CBF=30°.
故选:B.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记各性质是解题的关键.9、C【分析】根据因式分解法,可得答案.【详解】解:,方程整理,得,x2-x=0
因式分解得,x(x-1)=0,
于是,得,x=0或x-1=0,
解得x1=0,x2=1,
故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.10、D【分析】根据事件发生的可能性大小,逐一判断选项,即可.【详解】A、旭日东升是必然事件;B、刻舟求剑是不可能事件;C、拔苗助长是不可能事件;D、守株待兔是随机事件;故选:D.【点睛】本题主要考查随机事件的概念,掌握随机事件的定义,是解题的关键.11、B【解析】根据中心对称图形的概念判断即可.【详解】A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形故选:B.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12、D【分析】根据比例的性质逐个判断即可.【详解】解:由得,2a=3b,A、∵,∴2b=3a,故本选项不符合题意;
B、∵,∴3a=2b,故本选项不符合题意;
C、,故本选项不符合题意;
D、,故本选项符合题意;
故选:D.【点睛】本题考查了比例的性质,能熟记比例的性质是解此题的关键,如果,那么ad=bc.二、填空题(每题4分,共24分)13、或【分析】由二次函数解析式的顶点式写出二次函数坐标为,将点P坐标代入二次函数解析式,求出a的值,如图,抛物线向右平移再次经过点P,即点P的对称点点Q与点P重合,向右移动了4个单位,写出抛物线解析式即可.【详解】由顶点坐标(0,0)可设二次函数解析式为,将P(2,2)代入解析式可得a=,所以,如图,图像上,点P的对称点为点Q(-2,2),当点Q与点P重合时,向右移动了4个单位,所以抛物线解析式为或.故答案为或.【点睛】本题主要考查二次函数顶点式求解析式、二次函数的图像和性质以及二次函数的平移,本题关键在于根据题意确定出向右平移的单位.14、(4,3)【解析】根据顶点式的坐标特点直接写出顶点坐标.【详解】解:∵y=5(x-4)2+3是抛物线解析式的顶点式,
∴顶点坐标为(4,3).
故答案为(4,3).【点睛】此题考查二次函数的性质,掌握顶点式y=a(x-h)2+k中,顶点坐标是(h,k)是解决问题的关键.15、1【分析】设道路宽为x米,根据耕地的面积-道路的面积=试验田的面积,即可得出关于x的一元二次方程,解之即可得出结论.【详解】解:设道路宽为x米,
根据耕地的面积-道路的面积=试验田的面积得:,
解得:x1=1,x2=1.
∵1>20,
∴x=1舍去.
答:道路宽为1米.【点睛】本题考查了一元二次方程的应用,根据耕地的面积-道路的面积=试验田的面积,列出关于x的一元二次方程是解题的关键.16、y2=.【分析】根据,过y1上的任意一点A,得出△CAO的面积为2,进而得出△CBO面积为3,即可得出y2的解析式.【详解】解:∵,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,S△AOB=1,∴△CBO面积为3,∴xy=6,∴y2的解析式是:y2=.故答案为:y2=.17、2【分析】由根与系数的关系,根据两根之和为计算即可.【详解】∵关于的方程有一个根,
∴
解得:;
故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,熟记根与系数的关系的结构是解题的关键.18、【分析】先求出函数解析式,求出函数值取值范围,把t的取值范围转化为函数值的取值范围.【详解】由已知可得,对称轴所以b=-2所以当x=1时,y=-1即顶点坐标是(1,-1)当x=-1时,y=3当x=4时,y=8由得因为当时,所以在范围内有实数解,则的取值范围是故答案为:【点睛】考核知识点:二次函数和一元二次方程.数形结合分析问题,注意函数的最低点和最高点.三、解答题(共78分)19、(1)证明见解析;(2).【分析】(1)求出∠ADB的度数,求出∠ABD+∠DBC=90,根据切线判定推出即可;(2)连接OD,分别求出三角形DOB面积和扇形DOB面积,即可求出答案.【详解】(1)是的直径,,,,,,,是的切线;(2)连接,,且,,,,,,,,,的半径为,阴影部分的面积扇形的面积三角形的面积.【点睛】本题考查了切线判定的定理和三角形及扇形面积的计算方法,熟练掌握该知识点是本题解题的关键.20、(1)8,0.35;(2)见解析;(3)89.5~94.5;(4).【分析】(1)根据频数=总数×频率可求得m的值,利用频率=频数÷总数可求得n的值;(2)根据m的值补全直方图即可;(3)根据中位数的概念进行求解即可求得答案;(4)画树状图得到所有等可能的情况数,找出符合条件的情况数,然后利用概率公式进行求解即可.【详解】(1)m=40×0.2=8,n=14÷40=0.35,故答案为8,0.35;(2)补全图形如下:(3)由于40个数据的中位数是第20、21个数据的平均数,而第20、21个数据均落在89.5~94.5,∴推测他的成绩落在分数段89.5~94.5内,故答案为89.5~94.5;(4)选手有4人,2名是男生,2名是女生,画树状图如下:共有12种等可能的结果,其中一名男生一名女生的结果数有8种,所以恰好是一名男生和一名女生的概率为.【点睛】本题考查了频数(率)分布表,频数分布直方图,中位数,列表法或树状图法求概率,正确把握相关知识是解题的关键.21、(1)1,(2)45°(3),【解析】(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.证明,即可解决问题.(2)如图2中,设BD交AC于点O,BD交PC于点E.证明,即可解决问题.(3)分两种情形:①如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.证明即可解决问题.②如图3﹣2中,当点P在线段CD上时,同法可证:解决问题.【详解】解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.,,,,,,,,,,线BD与直线CP相交所成的较小角的度数是,故答案为1,.(2)如图2中,设BD交AC于点O,BD交PC于点E.,,,,,,,,直线BD与直线CP相交所成的小角的度数为.(3)如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.,,,,,,,,,,,,,,,,,,,A,D,C,B四点共圆,,,,,设,则,,c.如图3﹣2中,当点P在线段CD上时,同法可证:,设,则,,,.【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.22、(1)证明见解析;(2)3或.(3)或0<【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
(3)此题首先应针对点的位置分为两种大情况:①与AE相切,②与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.【详解】(1)证明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,则有PE∥AB∴四边形ABEP为矩形,∴PA=EB=3,即x=3.情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,即∴满足条件的x的值为3或(3)或【点睛】两组角对应相等,两三角形相似.23、(1)①③;(2)【分析】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;(2)列表得出所有等可能的情况数,找出两球标号数字是一奇一偶的情况数,即可求出所求的概率.【详解】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;故答案为:①③;(2)列表如下:123451﹣﹣﹣(1,2)(1,3)(1,4)(1,5)2(2,1)﹣﹣﹣(2,3)(2,4)(2,5)3(3,1)(3,2)﹣﹣﹣(3,4)(3,5)4(4,1)(4,2)(4,3)﹣﹣﹣(4,5)5(5,1)(5,2)(5,3)(5,4)﹣﹣﹣所有等可能的情况有20种,其中数字是一奇一偶的情况有12种,则P(一奇一偶)=.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24、【分析】将特殊角的三角函数值代入求解即可.【详解】原式=|-1|+2×-1=1-+-1=.【点睛】本题考查了特殊角的三角函数值,解答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校工作总结和工作计划(6篇)
- 读书活动的心得体会
- 教学工作心得体会总结8篇
- 新教材高考地理二轮复习综合题专项训练七简易绘图类含答案
- 四川省泸州市江阳区泸州老窖天府中学2024-2025学年七年级上学期期中地理试题(含答案)
- 河南省安阳市林州市湘豫名校联考2024-2025学年高三上学期11月一轮诊断考试 数学(含答案)
- 2015-2024年高考数学总复习:数列小题综合(学生卷)
- 个人信用贷款合同模板
- 户外照明产品购销合同模板
- 2024年公司运输司机聘用合同
- 河北省沧衡八校联盟2023-2024学年高二上学期11月期中数学试题
- 食品化学课件之碳水化合物
- 《财务管理》课程教学成果创新报告
- 钻井队设备管理年终工作总结范文
- 工程项目培训制度
- 人工智能无人驾驶ppt
- 幼教培训课件:《幼儿园班级区域创设》
- 李中莹亲密关系全面技巧
- 动火作业安全规范AQ3022-2008
- Unit 1 Our living planet Reading 课件-2022-2023学年高中英语牛津译林版(2020)选修第一册
- 如何做好谈话笔录演示文稿
评论
0/150
提交评论