版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市胶州市2023年数学九年级第一学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()A. B. C. D.2.如图,E,F分别为矩形ABCD的边AD,BC的中点,若矩形ABCD与矩形EABF相似,AB=1,则矩形ABCD的面积是()A.4 B.2 C. D.3.下列运算中,正确的是().A. B. C. D.4.如图,直线y=2x与双曲线在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0) B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2) D.(﹣2.1)或(2,﹣1)5.在同一平面直角坐标系中,反比例函数y(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A. B.C. D.6.在﹣3、﹣2、﹣1、0、1、2这六个数中,任取两个数,恰好和为﹣1的概率为()A. B. C. D.7.反比例函数的图像经过点,,则下列关系正确的是()A. B. C. D.不能确定8.如图所示,在平面直角坐标系中,已知点,,,以某点为位似中心,作出的位似图形,则位似中心的坐标为()A. B. C. D.9.如图,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是()A.(2,7) B.(3,7) C.(3,8) D.(4,8)10.如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,,则的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.x=1是关于x的一元二次方程x2+mx﹣5=0的一个根,则此方程的另一个根是.12.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是_______.13.若一个圆锥的侧面积是,侧面展开图是半圆,则该圆锥的底面圆半径是______.14.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.15.如图所示,在菱形OABC中,点B在x轴上,点A的坐标为(6,10),则点C的坐标为_____.16.点A(1,-2)关于原点对称的点A1的坐标为________.17.如图,△ABC的顶点A、B、C都在边长为1的正方形网格的格点上,则sinA的值为________.18.如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.三、解答题(共66分)19.(10分)某商店如果将进货价为8元的商品按每件11元售出,每天可销售211件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价1.5元,其销量减少11件.(1)若涨价x元,则每天的销量为____________件(用含x的代数式表示);(2)要使每天获得711元的利润,请你帮忙确定售价.20.(6分)如图,AB是⊙O的直径,CD是⊙O的弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若,AE=1,求劣弧BD的长.21.(6分)如图,海中有两个小岛,,某渔船在海中的处测得小岛D位于东北方向上,且相距,该渔船自西向东航行一段时间到达点处,此时测得小岛恰好在点的正北方向上,且相距,又测得点与小岛相距.(1)求的值;(2)求小岛,之间的距离(计算过程中的数据不取近似值).22.(8分)已知关于x的一元二次方程mx2-2x+1=0.(1)若方程有两个实数根,求m的取值范围;(2)若方程的两个实数根为x1,x2,且x1x2-x1-x2=,求m的值.23.(8分)关于的一元二次方程有两个不相等且非零的实数根,探究满足的条件.小华根据学习函数的经验,认为可以从二次函数的角度研究一元二次方程的根的符号。下面是小华的探究过程:第一步:设一元二次方程对应的二次函数为;第二步:借助二次函数图象,可以得到相应的一元二次方程中满足的条件,列表如下表。方程两根的情况对应的二次函数的大致图象满足的条件方程有两个不相等的负实根①_______方程有两个不相等的正实根②③____________(1)请将表格中①②③补充完整;(2)已知关于的方程,若方程的两根都是正数,求的取值范围.24.(8分)一个不透明的口袋里有四个完全相同的小球,把它们分别标号为,,,.随机摸取一个小球然后放回,再随机摸取一个.请用画树状图和列表的方法,求下列事件的概率:(1)两次取出的小球标号相同;(2)两次取出的小球标号的和等于1.25.(10分)我们把两条中线互相垂直的三角形称为“中垂三角形”.如图1,图2,图3中,是的中线,,垂足为点,像这样的三角形均为“中垂三角形.设.(1)如图1,当时,则_________,__________;(2)如图2,当时,则_________,__________;归纳证明(3)请观察(1)(2)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(4)如图4,在中,分别是的中点,且.若,,求的长.26.(10分)如图,在平面直角坐标系中,顶点为(11,﹣)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,8).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)连接AC,在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形,若存在,请直接写出点P的坐标,若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据题中给出的函数图像结合一次函数性质得出a<0,b>0,再由反比例函数图像性质得出c<0,从而可判断二次函数图像开口向下,对称轴:>0,即在y轴的右边,与y轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b图像过一、二、四,∴a<0,b>0,又∵反比例函数y=图像经过二、四象限,∴c<0,∴二次函数对称轴:>0,∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.2、D【分析】根据相似多边形的性质列出比例式,计算即可.【详解】∵矩形ABCD与矩形EABF相似,∴,即=,解得,AD=,∴矩形ABCD的面积=AB•AD=,故选:D.【点睛】此题主要考查相似多边形,解题的关键是根据相似的定义列出比例式进行求解.3、C【解析】试题分析:3a和2b不是同类项,不能合并,A错误;和不是同类项,不能合并,B错误;,C正确;,D错误,故选C.考点:合并同类项.4、D【解析】试题分析:联立直线与反比例解析式得:,消去y得到:x2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A(1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D.5、D【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的右侧,则a,b异号,即b<1.所以反比例函数y的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的左侧,则a,b同号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.6、D【分析】画树状图展示所有15种等可能的结果数,找出恰好和为-1的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有15种等可能的结果数,其中恰好和为-1的结果数为3,所以任取两个数,恰好和为-1的概率=.故选:D.【点睛】本题考查的是概率的问题,能够用树状图解决简单概率问题是解题的关键.7、B【分析】根据点的横坐标结合反比例函数图象上点的坐标特征即可求出y1、y2的值,比较后即可得出结论.【详解】解:∵反比例函数的图象经过点,,
∴y1=3,y2=,
∵3>,
∴.
故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征,根据点的横坐标利用反比例函数图象上点的坐标特征求出点的纵坐标是解题的关键.8、C【分析】直接利用位似图形的性质得出位似中心.【详解】如图所示,点P即为位似中点,其坐标为(2,2),故答案为:(2,2).【点睛】此题主要考查了位似变换,正确掌握位似中心的定义是解题关键.9、A【解析】过C作CE⊥y轴于E,∵四边形ABCD是矩形,∴CD=AB,∠ADC=90°,∴∠ADO+∠CDE=∠CDE+∠DCE=90°,∴∠DCE=∠ADO,∴△CDE∽△ADO,∴,∵OD=2OA=6,AD:AB=3:1,∴OA=3,CD:AD=,∴CE=OD=2,DE=OA=1,∴OE=7,∴C(2,7),故选A.10、B【分析】连接BO,过B点和C点分别作y轴的垂线段BE和CD,证明△BEP≌△CDP(AAS),则△BEP面积=△CDP面积;易知△BOE面积=×8=2,△COD面积=|k|.由此可得△BOC面积=△BPO面积+△CPD面积+△COD面积=3+|k|=12,解k即可,注意k<1.【详解】连接BO,过B点和C点分别作y轴的垂线段BE和CD,∴∠BEP=∠CDP,又∠BPE=∠CPD,BP=CP,∴△BEP≌△CDP(AAS).∴△BEP面积=△CDP面积.∵点B在双曲线上,所以△BOE面积=×8=2.∵点C在双曲线上,且从图象得出k<1,∴△COD面积=|k|.∴△BOC面积=△BPO面积+△CPD面积+△COD面积=2+|k|.∵四边形ABCO是平行四边形,∴平行四边形ABCO面积=2×△BOC面积=2(2+|k|),∴2(3+|k|)=12,解得k=±3,因为k<1,所以k=-3.故选:B.【点睛】本题主要考查了反比例函数k的几何意义、平行四边形的面积,解决这类问题,要熟知反比例函数图象上点到y轴的垂线段与此点与原点的连线组成的三角形面积是|k|.二、填空题(每小题3分,共24分)11、-5【解析】把代入方程得:,解得:,∴原方程为:,解此方程得:,∴此方程的另一根为:.12、y=2(x+2)2﹣1【解析】直接根据“上加下减、左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,二次函数y=2x2的图象向下平移1个单位得到y=2x2−1,由“上加下减”的原则可知,将二次函数y=2x2−1的图象向左平移2个单位可得到函数y=2(x+2)2−1,故答案是:y=2(x+2)2−1.【点睛】本题考查的是二次函数图象与几何变换,熟练掌握规律是解题的关键.13、1.【解析】试题解析:设圆锥的母线长为R,解得:R=6,∴圆锥侧面展开图的弧长为:6π,∴圆锥的底面圆半径是6π÷2π=1.故答案为1.14、1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切,∴d=R﹣r=5﹣2=1cm,故答案为1.【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.15、(6,﹣10)【分析】根据菱形的性质可知A、C关于直线OB对称,再根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数解答即可.【详解】解:∵四边形OABC是菱形,∴A、C关于直线OB对称,∵A(6,10),∴C(6,﹣10),故答案为:(6,﹣10).【点睛】本题考查了菱形的性质和关于x轴对称的点的坐标特点,属于基本题型,熟练掌握菱形的性质是关键.16、(-1,2)【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点A(1,-2)与点A1(-1,2)关于原点对称,∴A1(-1,2).故答案为:(-1,2).【点睛】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.17、【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.18、10【分析】当∠ABO=90°时,点O到顶点A的距离的最大,则△ABC是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O到顶点A的距离最大.
则OA=AB=10.
故答案是:10.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O到顶点A的距离的最大的条件是解题关键.三、解答题(共66分)19、(1)211-21x;(2)12元.【解析】试题分析:(1)如果设每件商品提高x元,即可用x表示出每天的销售量;(2)根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.试题解析:解:(1)211-21x;(2)根据题意,得(11-8+x)(211-21x)=711,整理得x2-8x+12=1,解得x1=2,x2=3,因为要采取提高售价,减少售货量的方法增加利润,所以取x=2.所以售价为11+2=12(元),答:售价为12元.点睛:此题考查了一元二次方程在实际生活中的应用.解题的关键是理解题意,找到等量关系,列出方程.20、(1)见解析;(2).【分析】(1)由等腰三角形的性质与圆周角定理,易得∠BCO=∠B=∠D;
(2)由垂径定理可求得CE与DE的长,然后证得△BCE∽△DAE,再由相似三角形的对应边成比例,求得BE的长,继而求得直径与半径,再求出圆心角∠BOD即可解决问题;【详解】(1)证明:∵OB=OC,∴∠BCO=∠B,∵∠B=∠D,∴∠BCO=∠D;(2)解:连接OD.∵AB是⊙O的直径,CD⊥AB,∴,∵∠B=∠D,∠BEC=∠DEC,∴△BCE∽△DAE,∴AE:CE=DE:BE,∴,解得:BE=3,∴AB=AE+BE=4,∴⊙O的半径为2,∵,∴∠EOD=60°,∴∠BOD=120°,∴的长.【点睛】此题考查圆周角定理、垂径定理、相似三角形的判定与性质以及等腰三角形的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等.证得△BCE∽△DAE是解题关键.21、(1);(2)小岛、相距.【解析】(1)如图,过点作,垂足为,在中,先求出DE长,然后在在中,根据正弦的定义由即可求得答案;(2)过点作,垂足为,则四边形BEDF是矩形,在中,利用勾股定理求出BE长,再由矩形的性质可得,,继而得CF长,在中,利用勾股定理求出CD长即可.【详解】(1)如图,过点作,垂足为,在中,,,∴在中,,∴;(2)过点作,垂足为,则四边形BEDF是矩形,在中,,,∴,∵四边形是矩形,∴,,∴,在中,,因此小岛、相距.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形,灵活运用相应三角形函数是解题的关键.22、(1)m≤1且m≠0(2)m=-2【分析】(1)根据一元二次方程的定义和判别式得到m≠0且Δ=(-2)2-4m≥0,然后求解不等式即可;(2)先根据根与系数的关系得到x1+x2=,x1x2=,再将已知条件变形得x1x2-(x1+x2)=,然后整体代入求解即可.【详解】(1)根据题意,得m≠0且Δ=(-2)2-4m≥0,解得m≤1且m≠0.(2)根据题意,得x1+x2=,x1x2=,∵x1x2-x1-x2=,即x1x2-(x1+x2)=,∴-=,解得m=-2.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式和根与系数的关系(韦达定理),根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.23、(1)①方程有一个负实根,一个正实根;②详见解析;③;(2)【分析】(1)根据函数的图象与性质即可得;(2)先求出方程的根的判别式,再利用③即可得出答案.【详解】(1)由函数的图象与性质得:①函数图象与x的负半轴和正半轴各有一个交点,则方程有一个负实根,一个正实根;②函数图象与x轴的两个交点均在x轴的正半轴上,画图如下所示:;③由②可得:;(2)方程的根的判别式为,则此方程有两个不相等的实数根由题意,可利用③得:,解得则方程组的解为故k的取值范围是.【点睛】本题考查了一元二次方程与二次函数的关系,掌握二次函数的图象与性质是解题关键.24、(1);(2);【分析】(1)先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号相同的占1种,然后根据概率的概念计算即可;
(2)由(1)可知有16种等可能的结果数,其中两次取出的小球标号的和等于1的有3种,进而可求出其概率.【详解】画树状图如图(1)∵共有种等可能的结果,两次取出的小球标号相同的共种情况,∴两次取出的小球标号相同的概率为.(2)两次取出的小球标号的和等于的情况共有种,两次取出的小球标号的和等于的概率为.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25、(1),;(2),;(3),证明见解析;(4)【分析】(1)根据三角形的中位线得出;,进而得到计算即可得出答案;(2)连接EF,中位线的性质以及求出AP、BP、EP和FP的长度再根据勾股定理求出AE和BF的长度即可得出答案;(3)连接EF,根据中位线的性质得出,根据勾股定理求出AE与AP和EP的关系以及BF与BP和FP的关系,即可得出答案;(4)取的中点,连接,结合题目求出四边形是平行四边形得出AP=FP即可得到是“中垂三角形”,根据第三问得出的结论代入,即可得出答案(连接,交于点,证明求得是的中线,进而得出是“中垂三角形”,再结合第三问得出的结论计算即可得出答案).【详解】解:(1)∵是的中线,∴是的中位线,∴,且,易得.∵,∴,∴.由勾股定理,得,∴.(2)如图2,连结.∵是的中线,∴是的中位线,∴,且,易得..∵,∴,∴.由勾股定理,得,∴.(3)之间的关系是.证明如下:如图3,连结.∵是的中线,∴是的中位线.∴,且,易得.在和中,∵,,∴.∴.∴,即.(4)解法1:设的交点为.如图4,取的中点,连接.∵分别是的中点,是的中点,∴.又∵,∴.∵四边形是平行四边形,∴,∴,∴四边形是平行四边形,∴,∴是“中垂三角形”,∴,即,解得.(另:连接,交于点,易得是“中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语宏观课程设计
- 二零二五年度智能通信基站场地租用及升级合同3篇
- 办公室文员岗位的职责描述模版(2篇)
- 二零二五年度按揭中二手房买卖合同范本:按揭利率风险控制版3篇
- 小学“阳光少年”评选活动方案(3篇)
- 幼儿活动课课程设计
- 学校建设项目管理制度范文(2篇)
- 二零二五年度安全标准厂房水电消防应急预案合同3篇
- 二零二五年度加油站油品供应与行业规范执行协议3篇
- 工程项目公共卫生突发事件应急预案模版(2篇)
- 西交大少年班英语考试试题
- 北京语言大学保卫处管理岗位工作人员招考聘用【共500题附答案解析】模拟试卷
- 人教版七年级下册数学全册完整版课件
- 初中生物人教七年级上册(2023年更新) 生物圈中的绿色植物18 开花和结果
- 水电解质及酸碱平衡的业务学习
- CSCEC8XN-SP-安全总监项目实操手册
- 口腔卫生保健知识讲座班会全文PPT
- 成都市产业园区物业服务等级划分二级标准整理版
- 最新监督学模拟试卷及答案解析
- ASCO7000系列GROUP5控制盘使用手册
- 污水处理厂关键部位施工监理控制要点
评论
0/150
提交评论