![七年级数学下册第19课 三元一次方程组(学生版)_第1页](http://file4.renrendoc.com/view11/M03/3F/33/wKhkGWXOz9SAfnHyAAE5zw2tYZI636.jpg)
![七年级数学下册第19课 三元一次方程组(学生版)_第2页](http://file4.renrendoc.com/view11/M03/3F/33/wKhkGWXOz9SAfnHyAAE5zw2tYZI6362.jpg)
![七年级数学下册第19课 三元一次方程组(学生版)_第3页](http://file4.renrendoc.com/view11/M03/3F/33/wKhkGWXOz9SAfnHyAAE5zw2tYZI6363.jpg)
![七年级数学下册第19课 三元一次方程组(学生版)_第4页](http://file4.renrendoc.com/view11/M03/3F/33/wKhkGWXOz9SAfnHyAAE5zw2tYZI6364.jpg)
![七年级数学下册第19课 三元一次方程组(学生版)_第5页](http://file4.renrendoc.com/view11/M03/3F/33/wKhkGWXOz9SAfnHyAAE5zw2tYZI6365.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第19课三元一次方程组目标导航目标导航课程标准1.理解三元一次方程(或组)的含义;2.会解简单的三元一次方程组;3.会列三元一次方程组解决有关实际问题.知识精讲知识精讲知识点01三元一次方程及三元一次方程组的概念1.三元一次方程的定义:含有个未知数,并且含有未知数的项的次数都是的方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.注意:(1)三元一次方程的条件:①是方程;②含有个未知数;③含未知数的项的最高次数是次.(2)三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c.2.三元一次方程组的定义:一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.注意:(1)三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.知识点02三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.注意:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.知识点03三元一次方程组的应用列三元一次方程组解应用题的一般步骤:1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;4.解这个方程组,求出未知数的值;5.写出答案(包括单位名称).注意:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.能力拓展能力拓展考法01三元一次方程及三元一次方程组的概念【典例1】下列方程组不是三元一次方程组的是().A.B.C.D.考法02三元一次方程组的解法【典例2】若x:y:z=2:7:5,x﹣2y+3z=6,求的值.【即学即练】解方程组【典例3】已知方程组的解使得代数式x-2y+3z的值等于-10,求a的值.【即学即练】若,则x:y:z=.考法03三元一次方程组的应用【典例4】小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【即学即练】有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元 B.1.05元 C.0.95元 D.0.9元分层提分分层提分题组A基础过关练1.下列方程组中是三元一次方程组的是()A. B. C. D.2.下列四组数中,是方程组的解是()A. B. C. D.3.三元一次方程组的解是A. B. C. D.4.观察方程组的系数特征,若要使求解简便,消元的方法应选取()A.先消去 B.先消去 C.先消去 D.以上说法都不对5.设,则的值为A. B. C. D.7.已知方程组(xyz≠0),则x:y:z等于()A.2:1:3 B.3:2:1 C.1:2:3 D.3:1:28.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱()A.128元 B.130元 C.150元 D.160元9.若关于的方程组的解也是二元一次方程的解,则的值为()A.1 B.3 C. D.210.某一长方体纸盒的表面展开图如图所示,根据图中数据可得该长方体纸盒的容积为()A. B. C. D.11.某班元旦晚会需要购买甲、乙、丙三种装饰品,若购买甲3件,乙5件,丙1件,共需62元,若购甲4件,乙7件,丙1件共需77元.现在购买甲、乙、丙各一件,共需()元.A.31 B.32 C.33 D.34题组B能力提升练12.若是一个三元一次方程,那么_______,________.13.方程组的解是_____.14.已知|x﹣z+4|+|z﹣2y+1|+|x+y﹣z+1|=0,则x+y+z=________.15.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.16.若关于x,y的二元一次方程组的解也是二元一次方程x+2y=8的解,则k的值为____.17.重庆市某中学举行全校文艺汇报演出,部分班级需要参与准备工作.这些班级平均每班有36名同学参加,其中参加人数低于30人的班级平均每班有28人参加,参加人数不低于30人的班级平均每班有42人参加.正式开始后,由于工作比较复杂,参与准备工作的班级每个班增加了5人,此时参加人数低于30人的班级平均每班有29人参加,参加人数不低于30人的班级平均每班有45人参加.已知参加的班级个数不低于25,且不高于35,那么参加准备工作的班级共有______个.18.有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,如果放牧16头牛,则__________天可以吃完牧草.题组C培优拔尖练19.解三元一次方程组.20.解下列方程组:(1);(2).21.水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?22.阅读材料:(一)对于方程组,每个未知数的系数呈循环对称形式出现,则用以下方法巧解方程组.解:将①+②+③,得:,则…④用①-④,②-④,③-④,得:(二)对于方程组且x,y,z均为正数,因为x,y,z均不为0,则原方程组可改写为,每个未知数的次数也是呈循环对称形式出现,则用以下方法巧解方程组.解:将①②③,得:,且x,y,z均为正数,则④,用④①,④②,④③,得:利用以上材料,解方程组:(1);(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海嘉定区高三期末一模高考英语试卷(含答案详解)
- 生态与教育共筑绿色校园未来
- 知识产权管理在企业战略中的地位
- 电商类移动应用的用户体验设计要点
- 社交媒体在旅游时尚教育中的作用
- 电子商务环境下仓储管理策略研究
- 大班第二学期健康教育总结
- 学校教学工作计划
- 知识产权教育在高校的创新推广
- 知识产权意识提升从教育到实践的桥梁
- 2025年度剧本杀剧本版权授权与收益分成合同
- 2025年春季学期学校工作计划及安排表
- 2025年一种板式过滤膜装置项目投资可行性研究分析报告
- BMS基础知识培训
- 质保管理制度
- 2024年全国卷新课标1高考英语试题及答案
- 2024-2025学年高二上学期期末复习解答题压轴题十七大题型专练(范围:第四、五章)(含答案)
- 2024年10月自考13003数据结构与算法试题及答案
- 2024新版《药品管理法》培训课件
- 浙江省杭州市2024年中考英语真题(含答案)
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
评论
0/150
提交评论