版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省驻马店市数学高二下期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.以,为端点的线段的垂直平分线方程是A. B. C. D.2.“,”是“双曲线的离心率为”的()A.充要条件 B.必要不充分条件 C.既不充分也不必要条件 D.充分不必要条件3.已知双曲线的实轴长为16,左焦点分别为,是双曲线的一条渐近线上的点,且,为坐标原点,若,则双曲线的离心率为()A. B. C. D.4.中国古代儒家提出的“六艺”指:礼、乐、射、御、书、数.某校国学社团预在周六开展“六艺”课程讲座活动,周六这天准备排课六节,每艺一节,排课有如下要求:“乐”与“书”不能相邻,“射”和“御”要相邻,则针对“六艺”课程讲座活动的不同排课顺序共有()A.18种 B.36种 C.72种 D.144种5.已知集合A=A.x0<x≤3 B.x0≤x≤3 C.x6.已知是四面体内任一点,若四面体的每条棱长均为,则到这个四面体各面的距离之和为()A. B. C. D.7.离散型随机变量X的分布列为,,2,3,则()A.14a B.6a C. D.68.下列不等式中正确的有()①;②;③A.①③ B.①②③ C.② D.①②9.若,且,则()A. B. C. D.10.用数学归纳法证明“”,从“到”左端需增乘的代数式为()A. B. C. D.11.若,则,.设一批白炽灯的寿命(单位:小时)服从均值为1000,方差为400的正态分布,随机从这批白炽灯中选取一只,则()A.这只白炽灯的寿命在980小时到1040小时之间的概率为0.8186B.这只白炽灯的寿命在600小时到1800小时之间的概率为0.8186C.这只白炽灯的寿命在980小时到1040小时之间的概率为0.9545D.这只白炽灯的寿命在600小时到1800小时之间的概率为0.954512.设n=0π2A.20 B.-20 C.120 D.-120二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与椭圆相切于第一象限的点,且直线与轴、轴分别交于点、,当(为坐标原点)的面积最小时,(、是椭圆的两个焦点),若此时在中,的平分线的长度为,则实数的值是__________.14.已知数列{2n-1·an}的前n项和Sn=9-6n,则数列{an}的通项公式是________.15.若方程有实根,则实数m的取值范围是______.16.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设命题函数的值域为;命题对一切实数恒成立,若命题“”为假命题,求实数的取值范围.18.(12分)已知二项式展开式中的第7项是常数项.(1)求;(2)求展开式中有理项的个数.19.(12分)已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程.(2)求经过两圆交点的直线的极坐标方程.20.(12分)已知F(x)=,x∈(-1,+∞).(1)求F(x)的单调区间;(2)求函数F(x)在[1,5]上的最值.21.(12分)选修4-4:坐标系与参数方程直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2(sinθ+cosθ),直线l的参数方程为:(Ⅰ)写出圆C和直线l的普通方程;(Ⅱ)点P为圆C上动点,求点P到直线l的距离的最小值.22.(10分)设函数.(1)求函数的单调区间及极值;(2)若函数在上有唯一零点,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
求出的中点坐标,求出的垂直平分线的斜率,然后求出垂直平分线方程.【题目详解】因为,,所以的中点坐标,直线的斜率为,所以的中垂线的斜率为:,所以以,为端点的线段的垂直平分线方程是,即.故选:B【题目点拨】本题考查直线的一般式方程与直线的垂直关系,直线方程的求法,考查计算能力.2、D【解题分析】
当时,计算可得离心率为,但是离心率为时,我们只能得到,故可得两者之间的条件关系.【题目详解】当时,双曲线化为标准方程是,其离心率是;但当双曲线的离心率为时,即的离心率为,则,得,所以不一定非要.故“”是“双曲线的离心率为”的充分不必要条件.故选D.【题目点拨】充分性与必要性的判断,可以依据命题的真假来判断,若“若则”是真命题,“若则”是假命题,则是的充分不必要条件;若“若则”是真命题,“若则”是真命题,则是的充分必要条件;若“若则”是假命题,“若则”是真命题,则是的必要不充分条件;若“若则”是假命题,“若则”是假命题,则是的既不充分也不必要条件.3、A【解题分析】由于焦点到渐近线的距离为,故,依题意有,所以离心率为.【题目点拨】本小题主要考查直线和双曲线的位置关系,考查双曲线渐近线的几何性质,考查三角形的面积公式和双曲线离心率的求法.设双曲线的焦点为,双曲线的渐近线为,故双曲线焦点到渐近线的距离为,故焦点到渐近线的距离为.4、D【解题分析】
由排列、组合及简单的计数问题得:由题意可将“射”和“御”进行捆绑看成一个整体,共有种,然后与“礼”、“数”进行排序,共有种,最后将“乐”与“书”插入4个空即可,共有种,再相乘得解.【题目详解】由题意“乐”与“书”不能相邻,“射”和“御”要相邻,可将“射”和“御”进行捆绑看成一个整体,共有种,然后与“礼”、“数”进行排序,共有种,最后将“乐”与“书”插入4个空即可,共有种,由于是分步进行,所以共有种,故选:D.【题目点拨】本题考查排列、组合及简单计数问题,根据问题选择合适的方法是关键,此类问题常见的方法有元素优先法、捆绑法、插空法等,本题属于中等题.5、A【解题分析】
先化简求出集合A,B,进而求出A∩B.【题目详解】∵集合A={x|x-3xB={x|x≥0},∴A∩B={x|0<x≤3}.故选:A.【题目点拨】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.6、A【解题分析】
先求出正四面体的体积,利用正四面体的体积相等,求出它到四个面的距离.【题目详解】解:因为正四面体的体积等于四个三棱锥的体积和,
设它到四个面的距离分别为,
由于棱长为1的正四面体,四个面的面积都是;
又顶点到底面的投影在底面的中心,此点到底面三个顶点的距离都是高的,
又高为,
所以底面中心到底面顶点的距离都是;
由此知顶点到底面的距离是;
此正四面体的体积是.
所以:,
解得.
故选:A.【题目点拨】本题考查了正四面体的体积计算问题,也考查了转化思想和空间想象能力与计算能力.7、C【解题分析】
由离散型随机变量X的分布列得a+2a+3a=1,从而,由此能求出E(X).【题目详解】解:∵离散型随机变量X的分布列为,,∴,解得,∴.故选:C.【题目点拨】本题考查离散型随机变量的数学期望的求法,考查离散型随机变量的分布列、数学期望的等基础知识,考查运算求解能力,属于基础题.8、B【解题分析】
逐一对每个选项进行判断,得到答案.【题目详解】①,设函数,递减,,即,正确②,设函数,在递增,在递减,,即,正确③,由②知,设函数,在递减,在递增,,即正确答案为B【题目点拨】本题考查了利用导函数求函数的单调性进而求最值来判断不等式关系,意在考查学生的计算能力.9、D【解题分析】
先利用特殊值排除A,B,C,再根据组合数公式以及二项式定理论证D成立.【题目详解】令得,,在选择项中,令排除A,C;在选择项中,令,排除B,,故选D【题目点拨】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.10、B【解题分析】
分别求出时左端的表达式,和时左端的表达式,比较可得“从到”左端需增乘的代数式.【题目详解】由题意知,当时,有,当时,等式的左边为,所以左边要增乘的代数式为.故选:.【题目点拨】本题主要考查的是归纳推理,需要结合数学归纳法进行求解,熟知数学归纳法的步骤,最关键的是从到,考查学生仔细观察的能力,是中档题.11、A【解题分析】
先求出,,再求出和,即得这只白炽灯的寿命在980小时到1040小时之间的概率.【题目详解】∵,,∴,,所以,,∴.故选:A【题目点拨】本题主要考查正态分布的图像和性质,考查指定区间的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.12、B【解题分析】
先利用微积分基本定理求出n的值,然后利用二项式定理展开式通项,令x的指数为零,解出相应的参数值,代入通项可得出常数项的值。【题目详解】∵n=0二项式x-1x6令6-2r=0,得r=3,因此,二项式x-1x6故选:B.【题目点拨】本题考查定积分的计算和二项式指定项的系数,解题的关键就是微积分定理的应用以及二项式展开式通项的应用,考查计算能力,属于中等题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:求出切线方程,可得三角形面积,利用基本不等式求出最小值时切点坐标,设,利用余弦定理结合椭圆的定义,由三角形面积公式可得,,根据与椭圆的定义即可的结果.详解:由题意,切线方程为,直线与轴分别相交于点,,,,,,当且仅当时,为坐标原点)的面积最小,设,由余弦定理可得,,‘,,的内角平分线长度为,,,,故答案为.点睛:本题考查椭圆的切线方程、椭圆的定义、椭圆几何性质以及利用基本不等式求最值、三角形面积公式定义域、余弦定理的应用,意在考查学生综合利用所学知识解决问题的能力,属于难题.在解答与椭圆两个焦点有关的三角形问题时,往往综合利用椭圆的定义与余弦定理解答.14、an=【解题分析】当n=1时,20·a1=S1=3,∴a1=3.当n≥2时,2n-1·an=Sn-Sn-1=-6.∴an=-.∴数列{an}的通项公式为an=.15、.【解题分析】分析:将原式变形为=x+m,根据直线与椭圆相交相切的性质即可得出.详解:由题得若方程有实根等价于=x+m有解,y=等价于:表示x轴上方的部分椭圆,当直线y=x+m经过椭圆的又顶点(2,0)时为相交的一个临界值此时m=-2,当直线与椭圆的左上半部分相切时为第二个临界值,此时联立方程得:,求得:,因为与上半部分相交故直线与y轴的交点为正值,故m=,所以综合得:m的取值范围是.,故答案为.点睛:本题考查了直线与椭圆圆相交相切的性质、方程的根转化函数有解问题、数形结合思想方法,考查了推理能力与计算能力,属于中档题.16、1【解题分析】
确定系统抽样间隔k=16,根据样本中含编号为28的产品,即可求解,得到答案.【题目详解】由系统抽样知,抽样间隔k=80因为样本中含编号为28的产品,则与之相邻的产品编号为12和44,故所取出的5个编号依次为12,28,44,60,1,即最大编号为1.【题目点拨】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的方法,确定好抽样的间隔是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】试题分析:分别求出命题,成立的等价条件,利用且为假.确定实数的取值范围.试题解析:真时,合题意.时,.时,为真命题.真时:令,故在恒成立时,为真命题.为真时,.为假命题时,.考点:复合命题的真假.18、(1)(2)展开式中的有理项共有3项【解题分析】
(1)根据二项展开式的通项以及第项是常数项计算的值;(2)根据二项展开式的通项,考虑未知数的指数为整数的情况,然后判断有理项的项数.【题目详解】解:(1)二项式展开式的通项为第7项为常数项,(2)由(1)知,若为有理项,则为整数,为6的倍数,,共三个数,展开式中的有理项共有3项.【题目点拨】本题考查二项展开式的通项的应用,难度一般.二项展开式中的有理项的分析的主要依据是:未知数的指数为整数;二项展开式中的常数项的分析的主要依据是:未知数的指数为.19、(1)x2+y2-2x-2y-2=0(2)ρsin(θ+)=【解题分析】(1)∵ρ=2,∴ρ2=4,即x2+y2=4.∵ρ2-2ρcos(θ-)=2,∴ρ2-2ρ(cosθcos+sinθsin)=2.∴x2+y2-2x-2y-2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即ρsin(θ+)=.20、(1)单调递增区间为(-1,0)和(4,+∞),单调递减区间为(0,4);(2)最大值为,最小值为.【解题分析】
(1)由微积分基本定理可得出F(x)的表达式,进而求出其导数F′(x),令F′(x)>0,F′(x)<0解次不等式即可得出F(x)的单调增区间和单调减区间.(2)由(1)可得F(x)在[1,5]上的单调性,即可得出其最值.【题目详解】解:(1)F′(x)=′=x2-4x,由F′(x)>0,即x2-4x>0,得-1<x<0或x>4;由F′(x)<0,即x2-4x<0,得0<x<4,所以F(x)的单调递增区间为(-1,0)和(4,+∞),单调递减区间为(0,4).(2)由(1)知F(x)在[1,4]上递减,在[4,5]上递增.因为F(1)=-2+=,F(4)=×43-2×42+=-,F(5)=×53-2×52+=-6,所以F(x)在[1,5]上的最大值为,最小值为-.【题目点拨】本题考察微积分定理以及利用导数解决函数单调性和闭区间上的最值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《脊柱整脊方法》课件
- 【1对1】2021年高中数学学业水平考试专题综合检测-模拟试卷(八)
- 2021高考英语一轮课下限时训练及答案(人教新课标必修3Unit-5)
- 安徽省合肥市蜀山区2024-2025学年七年级期末质量检测语文试卷(含答案)
- 2024-2025学年山东省烟台市蓬莱区八年级(上)期末英语试卷(五四学制)(含答案)
- 第二单元 焕发青春活力学情评估(含答案) 2024-2025学年统编版七年级道德与法治下册
- 【全程复习方略】2020年人教A版数学理(广东用)课时作业:第八章-第二节直线的交点坐标与距离公式
- 《儿化发音》课件
- 2021年高考语文考点总动员考向26-点号使用(解析版)
- 【全程复习方略】2020年人教A版数学文(广东用)课时作业:7.4直线、平面平行的判定及其性质
- 2024年茂名市高三第一次综合测试(一模)化学试卷(含答案)
- (常州卷)江苏省常州市2023-2024学年五年级上学期期末考试质量调研数学试卷一(苏教版)
- 教练式沟通培训课件
- 2023宣武医院舆情报告
- 医养结合养老院(养老中心)项目可行性报告
- 初三语文总复习全程计划表
- 电子技术基础与技能-机工教案第九章教案555集成定时器介绍
- 污水处理运行质量保证措施
- 国家食源性疾病监测工作标准手册
- 食材供货及质量保障措施方案
- 混凝土搅拌车课件
评论
0/150
提交评论