版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届西藏拉萨市那曲二高数学高二第二学期期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则如图中阴影部分所表示的集合为()A. B.C. D.2.下列命题错误的是()A.命题“若,则”的逆否命题为“若,则”B.若为假命题,则均为假命题C.对于命题:,使得,则:,均有D.“”是“”的充分不必要条件3.设,,都为大于零的常数,则的最小值为()。A. B. C. D.4.某随机变量服从正态分布,若在内取值的概率为0.6则在内取值的概率为()A.0.2 B.0.4 C.0.6 D.0.35.6名同学安排到3个社区,,参加志愿者服务,每个社区安排两名同学,其中甲同学必须到社区,乙和丙同学均不能到社区,则不同的安排方法种数为()A.5 B.6 C.9 D.126.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务必须排在前三位,且任务、必须排在一起,则这六项任务的不同安排方案共有()A.240种 B.188种 C.156种 D.120种7.从1、2、3、4、5、6中任取两个数,事件:取到两数之和为偶数,事件:取到两数均为偶数,则()A. B. C. D.8.极坐标系内,点到直线的距离是(
)A.1 B.2 C.3 D.49.已知为自然对数的底数,则函数的单调递增区间是()A. B. C. D.10.将5名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有种不同的方案;若每项比赛至少要安排一人时,则共有种不同的方案,其中的值为()A.543 B.425 C.393 D.27511.已知,且关于的方程有实根,则与的夹角的取值范围是()A. B. C. D.12.以下说法中正确个数是()①用反证法证明命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有一个钝角”;②欲证不等式成立,只需证;③用数学归纳法证明(,,在验证成立时,左边所得项为;④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,但小前提使用错误.A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,为锐角,,,则的值为________.14.样本中共有5个个体,其值分别为,0,1,2,1.则样本方差为________.15.抛物线上的点到其焦点的距离为______.16.某几何体由一个半圆锥和一个三棱锥组合而成,其三视图如图所示(单位:厘米),则该几何体的体积(单位:立方厘米)是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,三棱锥中,平面,,,为上一点,,,分别为,的中点.(1)证明:;(2)求平面与平面所成角的余弦值.18.(12分)为了调查中学生每天玩游戏的时间是否与性别有关,随机抽取了男、女学生各50人进行调查,根据其日均玩游戏的时间绘制了如下的频率分布直方图.(1)求所调查学生日均玩游戏时间在分钟的人数;(2)将日均玩游戏时间不低于60分钟的学生称为“游戏迷”,已知“游戏迷”中女生有6人;①根据已知条件,完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别关系;非游戏迷游戏迷合计男女合计②在所抽取的“游戏迷”中按照分层抽样的方法抽取10人,再在这10人中任取9人进行心理干预,求这9人中男生全被抽中的概率.附:(其中为样本容量).0.150.100.050.0250.0102.0722.7063.8415.0246.63519.(12分)如图,四棱锥,底面为直角梯形,,,,.(1)求证:平面平面;(2)若直线与平面所成角为,求直线与平面所成角的正弦值.20.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,试用所学知识说明上述监控生产过程方法的合理性;附:若随机变量Z服从正态分布N(μ,),则P(μ-3σ<Z<μ+3σ)=0.9974,,.21.(12分)在棱长为a的正方体ABCD-A1B1C1D1中,E是棱DD1的中点:(1)求点D到平面A1BE的距离;(2)在棱上是否存在一点F,使得B1F∥平面A1BE,若存在,指明点F的位置;若不存在,请说明理由.22.(10分)已知.为锐角,,.(1)求的值;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
由图象可知阴影部分对应的集合为,然后根据集合的基本运算求解即可.【题目详解】由Venn图可知阴影部分对应的集合为,或,,,即,故选D.【题目点拨】本题主要考查集合的计算,利用图象确定集合关系是解题的关键,考查分析问题和解决问题的能力,属于基础题.2、B【解题分析】
由原命题与逆否命题的关系即可判断A;由复合命题的真值表即可判断B;由特称命题的否定是全称命题即可判断C;根据充分必要条件的定义即可判断D;.【题目详解】A.命题:“若p则q”的逆否命题为:“若¬q则¬p”,故A正确;B.若p∧q为假命题,则p,q中至少有一个为假命题,故B错.C.由含有一个量词的命题的否定形式得,命题p:∃x∈R,使得x2+x+1<0,则¬p为:∀x∈R,均有x2+x+1≥0,故C正确;D.由x2﹣3x+2>0解得,x>2或x<1,故x>2可推出x2﹣3x+2>0,但x2﹣3x+2>0推不出x>2,故“x>2”是“x2﹣3x+2>0”的充分不必要条件,即D正确故选:B.【题目点拨】本题考查简易逻辑的基础知识:四种命题及关系,充分必要条件的定义,复合命题的真假和含有一个量词的命题的否定,这里要区别否命题的形式,本题是一道基础题.3、B【解题分析】
由于,乘以,然后展开由基本不等式求最值,即可求解.【题目详解】由题意,知,可得,则,所以当且仅当,即时,取等号,故选:B.【题目点拨】本题主要考查了利用基本不等式求最值问题,其中解答中根据题意给要求的式子乘以是解决问题的关键,着重考查了分析问题和解答问题的能力,属于中档题.4、D【解题分析】分析:由正态分布曲线图,内取值的概率为0.6,区间关于对称,得解。详解:由正态分布曲线图,内取值的概率为,区间关于对称,故上的概率为.故选D点睛:正态分布,在区间段的概率,利用图像的对称性可得出左右两侧的区间的概率。5、C【解题分析】分析:该题可以分为两类进行研究,一类是乙和丙之一在A社区,另一在B社区,另一类是乙和丙在B社区,计算出每一类的数据,然后求解即可.详解:由题意将问题分为两类求解:第一类,若乙与丙之一在甲社区,则安排种数为种;第二类,若乙与丙在B社区,则A社区还缺少一人,从剩下三人中选一人,另两人去C社区,故安排方法种数为种;故不同的安排种数是种,故选C.点睛:该题考查的是有关分类加法计数原理,在解题的过程中,对问题进行正确的分类是解题的关键,并且需要将每一类对应的数据正确算出.6、D【解题分析】当E,F排在前三位时,=24,当E,F排后三位时,=72,当E,F排3,4位时,=24,N=120种,选D.7、D【解题分析】
根据条件概率公式可得解.【题目详解】事件分为两种情况:两个均为奇数和两个数均为偶数,所以,,由条件概率可得:,故选D.【题目点拨】本题考查条件概率,属于基础题.8、B【解题分析】
通过直角坐标和极坐标之间的互化,即可求得距离.【题目详解】将化为直角坐标方程为,把化为直角坐标点为,即到直线的距离为2,故选B.【题目点拨】本题主要考查极坐标与直角坐标之间的互化,点到直线的距离公式,难度不大.9、A【解题分析】因,故当时,函数单调递增,应选答案A。10、C【解题分析】分析:根据题意,易得5名同学中每人有3种报名方法,由分步计数原理计算可得答案.第二种先分组再排列,问题得以解决.详解:5名同学报名参加跳绳、接力,投篮三项比赛,每人限报一项,每人有3种报名方法,根据分步计数原理,x==243种,当每项比赛至少要安排一人时,先分组有(+)=25种,再排列有=6种,所以y=25×6=150种,所以x+y=1.故选:C.点睛:排列组合的综合应用问题,一般按先选再排,先分组再分配的处理原则.对于分配问题,解题的关键是要搞清楚事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏.11、B【解题分析】
根据方程有实根得到,利用向量模长关系可求得,根据向量夹角所处的范围可求得结果.【题目详解】关于的方程有实根设与的夹角为,则又又本题正确选项:【题目点拨】本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果.12、B【解题分析】
①根据“至多有一个”的反设为“至少有两个”判断即可。②不等式两边平方,要看正负号,同为正不等式不变号,同为负不等式变号。③令代入左式即可判断。④整数并不属于大前提中的“有些有理数”【题目详解】命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有两个钝角”;①错欲证不等式成立,因为,故只需证,②错(,,当时,左边所得项为;③正确命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,小前提使用错误.④正确综上所述:①②错③④正确故选B【题目点拨】本题考查推理论证,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:依题意,所以,所以.考点:三角恒等变换.14、2【解题分析】
根据题中数据,求出平均值,再由方差计算公式,即可求出结果.【题目详解】因为,0,1,2,1这五个数的平均数为:,所以其方差为:.故答案为:.【题目点拨】本题主要考查计算几个数的方差,熟记公式即可,属于基础题型.15、5【解题分析】
先计算抛物线的准线,再计算点到准线的距离.【题目详解】抛物线,准线为:点到其焦点的距离为点到准线的距离为5故答案为5【题目点拨】本题考查了抛物线的性质,意在考查学生对于抛物线的理解.16、【解题分析】
根据三视图确定出三棱锥的底面是一个等腰直角三角形且直角边长度都是,高为;半圆锥的底面是半径为的半圆,高为;据此计算出该几何体的体积.【题目详解】由三视图可知,三棱锥的体积:;半圆锥体积:,所以总体积为:.故答案为:.【题目点拨】本题考查空间几何体的体积计算,难度较易.计算组合体的体积时,可将几何体拆分为几个容易求解的常见几何体,然后根据体积公式完成求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解题分析】分析:由PA=AC=AB,N为AB上一点,AB=4AN,我们不妨令PA=1,然后以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系.由此不难得到各点的坐标(1)要证明CM⊥SN,我们可要证明即可,根据向量数量积的运算,我们不难证明;(2)要求平面与平面CMN所成角的大小,我们只要利用求向量夹角的方法,求出平面与平面CMN的法向量的夹角,再由它们之间的关系,易求出平面与平面CMN所成角的大小.详解:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系(如图).则P(0,0,1),C(0,1,0),B(2,0,0),又AN=AB,M、S分别为PB、BC的中点,∴N(,0,0),M(1,0,),S(1,,0),(1)=(1,-1,),=(-,-,0),∴·=(1,-1,)·(-,-,0)=0,[来源:Z.X.X.K]因此CM⊥SN.=(-,1,0),设a=(x,y,z)为平面CMN的一个法向量,∴·a=0,·a=0.则∴取y=1,则得=(2,1,-2).平面NBC的法向量,因为平面NBC与平面CMN所成角是锐二面角所以平面NBC与平面CMN所成角的余弦值为.点睛:空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18、(1)人(2)①填表见解析,能在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别有关.②【解题分析】
(1)计算日均玩游戏时间在分钟的频率,再乘以总人数即可;(2)①计算“游戏迷”有人,由于“游戏迷”中女生有6人,得男生有14人,即可列表,计算观测值,对照临界值得出结论;②利用古典概型求解即可【题目详解】(1)日均玩游戏时间在分钟的频率为,所以,所调查学生日均玩游戏时间在分钟的人数为.(2)“游戏迷”的频率为,共有“游戏迷”人,由于“游戏迷”中女生有6人,故男生有14人.①根据男、女学生各有50人,得列联表如下:非游戏迷游戏迷合计男361450女44650合计8020100.故能在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别有关.②“游戏迷”中女生有6人,男生有14人,按照分层抽样的方法抽取10人,则女生有3人,男生有7人.从中任取9人,只剩1人,则共有10种基本情况,记这9人中男生全被抽中为事件A,则有两名女生被选中,共有种基本情况,因此所求事件A的概率.【题目点拨】本题考查了列联表与独立性检验的应用问题,也考查了频率分布直方图与古典概型的概率计算问题,是基础题.19、(1)见解析(2)【解题分析】分析:(1)根据题意,设法证明平面,即可证得平面平面;;(2)如图以为原点建立空间直角坐标系,利用空间向量求直线与平面所成角的正弦值.详解:(1)证明:因为为直角梯形,,又因为,所以,所以,所以,又因为,,所以平面,又因为平面,所以平面平面;(2)作于,因为,所以为中点,由(1)知平面平面,且平面平面,所以平面,所以为直线与平面所成的角,设,因为,,所以,如图以为原点建立空间直角坐标系,则,,,9分设平面法向量,则,取,则,所以平面一个法向量,设与平面所成角为,则,所以直线与平面所成角为正弦值为.点睛:本题考查直线与直线,直线与平面,平面与平面垂直等基础知识;考查空间想象能力,推理论证能力,运算求解能力;考查数学结合思想,化归与转化思想20、(1)P(X≥1)=0.0408,E(X)=0.0416(2)上述监控生产过程的方法是合理的,详见解析【解题分析】
(1)通过可求出,利用二项分布的期望公式计算可得结果.(2)由(1)知落在(μ-3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理.【题目详解】解:(1)由题可知尺寸落在(μ-3σ,μ+3σ)之内的概率为0.9974,则落在(μ-3σ,μ+3σ)之外的概率为1-0.9974=0.0026,因为,所以P(X≥1)=1-P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026一天内抽取的16个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021高考生物限时规范特训:第22讲-染色体变异
- 《脊柱整脊方法》课件
- 【1对1】2021年高中数学学业水平考试专题综合检测-模拟试卷(八)
- 2021高考英语一轮课下限时训练及答案(人教新课标必修3Unit-5)
- 安徽省合肥市蜀山区2024-2025学年七年级期末质量检测语文试卷(含答案)
- 2024-2025学年山东省烟台市蓬莱区八年级(上)期末英语试卷(五四学制)(含答案)
- 第二单元 焕发青春活力学情评估(含答案) 2024-2025学年统编版七年级道德与法治下册
- 【全程复习方略】2020年人教A版数学理(广东用)课时作业:第八章-第二节直线的交点坐标与距离公式
- 《儿化发音》课件
- 2021年高考语文考点总动员考向26-点号使用(解析版)
- 2024年茂名市高三第一次综合测试(一模)化学试卷(含答案)
- (常州卷)江苏省常州市2023-2024学年五年级上学期期末考试质量调研数学试卷一(苏教版)
- 教练式沟通培训课件
- 2023宣武医院舆情报告
- 医养结合养老院(养老中心)项目可行性报告
- 初三语文总复习全程计划表
- 电子技术基础与技能-机工教案第九章教案555集成定时器介绍
- 污水处理运行质量保证措施
- 国家食源性疾病监测工作标准手册
- 食材供货及质量保障措施方案
- 混凝土搅拌车课件
评论
0/150
提交评论