版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济南市名校数学高二下期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则它们的大小关系是A. B. C. D.2.给出下列三个命题:(1)如果一个平面内有无数条直线平行于另一个平面,则这两个平面平行;(2)一个平面内的任意一条直线都与另一个平面不相交,则这两个平面平行;(3)一个平面内有不共线的三点到另一个平面的距离相等,则这两个平面平行;其中正确命题的个数是()A.0 B.1 C.2 D.33.已知函数是偶函数(且)的导函数,,当时,,则使不等式成立的x的取值范围是()A. B.C. D.4.集合,那么()A. B. C. D.5.中,边的高为,若,,,,,则()A. B. C. D.6.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则()A.乙、丁可以知道自己的成绩 B.乙可以知道四人的成绩C.乙、丁可以知道对方的成绩 D.丁可以知道四人的成绩7.变量满足约束条件,若的最大值为2,则实数等于()A.—2 B.—1 C.1 D.28.为了得到的图象,只需将函数的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位9.若,则m等于()A.9 B.8 C.7 D.610.已知函数,则在处的切线方程为()A. B. C. D.11.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据,计算得到的观测值,根据临界值表,以下说法正确的是()P(K2≥k0)0.500.400.250.150.100.050.050.0100.005k00.4550.7081.3232.0722.7063.8415.0246.6357.879A.在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”B.在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关C.在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关D.在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关12.已知函数,若存在,使得有解,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,当(e为自然常数),函数的最小值为3,则的值为_____________.14..15.已知是函数f(x)的导函数,,则________.16.如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知正四棱锥中,底面是边长为2的正方形,高为,为线段的中点,为线段的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.18.(12分)如图(1)是某水上乐园拟开发水滑梯项目的效果图,考虑到空间和安全方面的原因,初步设计方案如下:如图(2),自直立于水面的空中平台的上端点P处分别向水池内的三个不同方向建水滑道,,,水滑道的下端点在同一条直线上,,平分,假设水滑梯的滑道可以看成线段,均在过C且与垂直的平面内,为了滑梯的安全性,设计要求.(1)求滑梯的高的最大值;(2)现在开发商考虑把该水滑梯项目设计成室内游玩项目,且为保证该项目的趣味性,设计,求该滑梯装置(即图(2)中的几何体)的体积最小值.19.(12分)已知函数.(1)若在处,和图象的切线平行,求的值;(2)设函数,讨论函数零点的个数.20.(12分)如图,已知是圆(为圆心)上一动点,线段的垂直平分线交于点.(1)求点的轨迹的方程;(2)若直线与曲线相交于、两点,求面积的最大值.21.(12分)已知函数,.(Ⅰ)当时,求函数在点处的切线方程;(Ⅱ)当时,讨论函数的零点个数.22.(10分)在一个圆锥内作一个内接等边圆柱(一个底面在圆锥的底面上,且轴截面是正方形的圆柱),再在等边圆柱的上底面截得的小圆锥内做一个内接等边圆柱,这样无限的做下去.(1)证明这些等边圆柱的体积从大到小排成一个等比数列;(2)已知这些等边圆柱的体积之和为原来圆锥体积的,求最大的等边圆柱的体积与圆锥的体积之比.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】由指数函数的性质可得,而,因此,即。选A。2、B【解题分析】
根据面面平行的位置关系的判定依次判断各个命题的正误,从而得到结果.【题目详解】(1)若一个平面内有无数条互相平行的直线平行于另一个平面,两个平面可能相交,则(1)错误;(2)平面内任意一条直线与另一个平面不相交,即任意一条直线均与另一个平面平行,则两个平面平行,(2)正确;(3)若不共线的三点中的两点和另一个点分别位于平面的两侧,此时虽然三点到平面距离相等,但两平面相交,(3)错误.本题正确选项:【题目点拨】本题考查面面平行相关命题的辨析,考查学生的空间想象能力,属于基础题.3、D【解题分析】
构造函数,利用导数得到,在是增函数,再根据为偶函数,根据,解得的解集.【题目详解】解:令,,时,,时,,在上是减函数,是偶函数(2),当,(2),即,当时,(2),即,是偶函数,当,,故不等式的解集是,故选:.【题目点拨】本题考查了抽象函数的奇偶性与单调性,考查了构造函数及数形结合的思想.解决本题的关键是能够想到通过构造函数解决,属于中档题.4、D【解题分析】
把两个集合的解集表示在数轴上,可得集合A与B的并集.【题目详解】把集合A和集合B中的解集表示在数轴上,如图所示,则A∪B={x|-2<x<3}故选A.【题目点拨】本题考查学生理解并集的定义掌握并集的运算法则,灵活运用数形结合的数学思想解决数学问题,属基础题.5、D【解题分析】
试题分析:由,,可知6、A【解题分析】
根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果.【题目详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩.因此,乙、丁知道自己的成绩,故选:A.【题目点拨】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.7、C【解题分析】
将目标函数变形为,当取最大值,则直线纵截距最小,故当时,不满足题意;当时,画出可行域,如图所示,其中.显然不是最优解,故只能是最优解,代入目标函数得,解得,故选C.考点:线性规划.8、D【解题分析】
先利用诱导公式统一这两个三角函数的名称,再利用函数的图象变换规律,得出结论.【题目详解】将函数的图象向左平移个单位,可得的图象,故选D.【题目点拨】本题主要考查诱导公式的应用,函数的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.9、C【解题分析】分析:根据排列与组合的公式,化简得出关于的方程,解方程即可.详解:,,即,解得,故选C.点睛:本题主要考查排列公式与组合公式的应用问题,意在考查对基本公式掌握的熟练程度,解题时应熟记排列与组合的公式,属于简单题.10、C【解题分析】分析:求导得到在处的切线斜率,利用点斜式可得在处的切线方程.详解:已知函数,则则即在处的切线斜率为2,又则在处的切线方程为即.故选C.点睛:本题考查函数在一点处的切线方程的求法,属基础题.11、D【解题分析】分析:根据临界值表,确定犯错误的概率详解:因为根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关.选D.点睛:本题考查卡方含义,考查基本求解能力.12、B【解题分析】
先将化为,再令,则问题转化为:,然后通过导数求得的最大值代入可得.【题目详解】若存在,使得有解,即存在,使得,令,则问题转化为:,因为,当时,;当时,,所以函数在上递增,在上递减,所以,所以.故选B.【题目点拨】本题考查了不等式能成立问题,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求出导函数,由导函数求出极值,当极值只有一个时也即为最值.【题目详解】,,当时,则,在上是减函数,,(舍去).当时,当时,,递减,当时,,递增.∴,,符合题意.故答案为.【题目点拨】本题考查由导数研究函数的最值.解题时求出导函数,利用导函数求出极值,如果极值有多个,还要与区间端点处函数值比较大小得最值,如果在区间内只有一个极值,则这个极值也是相应的最值.14、【解题分析】试题分析:考点:定积分15、【解题分析】分析:先求导,再求,再求.详解:由题得令x=0得,所以.故答案为:ln2.点睛:(1)本题主要考查求导和导数值的计算,意在考查学生对这些知识的掌握水平和计算能力,属于基础题.(2)解答本题的关键是求.16、【解题分析】如下图,连接DO交BC于点G,设D,E,F重合于S点,正三角形的边长为x(x>0),则.,,三棱锥的体积.设,x>0,则,令,即,得,易知在处取得最大值.∴.点睛:对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解题分析】
(1)要证明平面,利用中位线可先证明即可;(2)找出直线与平面所成角为,利用正弦定理即可得到所成角的正弦值.【题目详解】解:(1)证明:在四棱锥中,连结交于点,连结,因为在中,为的中点,为的中点,所以为的中位线,得,又因为平面,平面,所以平面.(2)设,由题意得,因为为的中点,所以,,故平面.所以直线在平面内的射影为直线,为直线与平面所成的角,又因为,所以.由条件可得,,,,所以.在中,,,所以所以,故直线与平面所成角的正弦值为.【题目点拨】本题主要考查线面平行的判定,线面所成角的相关计算,意在考查学生的转化能力,分析能力及计算能力,难度中等.18、(1)m(2)562.5.【解题分析】
(1)分别设出CB、CA、PC的长,分别表示出面积,再利用不等关系求解即可;(2)利用已知条件,求得体积是关于x的函数,再利用导函数判别单调性求得最小值即可.【题目详解】(1)设.由题意知,由及平分得,所以.因为,所以,所以.所以滑道的高的最大值为m.(2)因为滑道的坡度为,所以.由(1)知,即.又,所以.所以三棱锥P-ABC的体积,所以,当时,单调递减,当时,单调递增,所以当时,,所以该滑梯装置的体积最小为562.5m³.【题目点拨】本题考查了解三角形和立体几何应用实际问题,熟悉题意,仔细分析,结合导函数的应用求最值是解题的关键,属于中档题目.19、(1)(2)见解析【解题分析】试题分析:(1)根据导数几何意义得解得,(2)按正负讨论函数单调性及值域:当时,在单增,,没有零点;当时,有唯一的零点;当时,在上单调递减,在上单调递增,;在单增,,所以时有个零点;时有个零点.试题解析:(1),由,得,所以,即(2)(1)当时,在单增,,故时,没有零点.(2)当时,显然有唯一的零点(3)当时,设,令有,故在上单调递增,在上单调递减,所以,,即在上单调递减,在上单调递增,(当且仅当等号成立)有两个根(当时只有一个根)在单增,令为减函数,故只有一个根.时有个零点;时有个零点;时有个零点;时有个零点;时,有个零点.20、(1);(2)1.【解题分析】
(1)由题意得,即为定值,且,由椭圆的定义可知,点在以、为焦点的椭圆上,即求点的轨迹的方程;(2)直线代入椭圆方程,消去,根据韦达定理求出.求出点到直线的距离,则面积,根据基本不等式求面积的最大值.【题目详解】(1)由题意得:,.是圆(为圆心)上一动点,.,∴点在以、为焦点的椭圆上,其中,,∴点的轨迹方程为.(2)直线代入椭圆方程,消去可得,由,得.设,则,.设点到直线的距离为,则,面积,当且仅当,即时,等号成立.∴面积的最大值为1.【题目点拨】本题考查椭圆的定义,考查与椭圆有关的面积问题,属于较难的题目.21、(Ⅰ);(Ⅱ)分类讨论,详见解析.【解题分析】
(Ⅰ)由已知得,求得,,由点斜式方程可得解.(Ⅱ)由已知得,分类讨论,,,四种情况下的零点个数.【题目详解】解:(Ⅰ)∵,∴,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 播音主持人雇佣协议
- 销售提成奖金合同
- 培训学校专业职业指导培训服务合同
- 终止水泥购销合同协议
- 安全协议与合同
- 招标投标表格部分的内容解读与分析
- 网络营销合同范本版合同协议解读
- 数字风向计仪表采购合同
- 公司总公司与分公司合作合同
- 房屋购买委托协议范本
- 2024年度餐饮店合伙人退出机制与财产分割协议2篇
- 《招商银行转型》课件
- 灵新煤矿职业病危害告知制度范文(2篇)
- 2024年护校队安全工作制度(3篇)
- 2024年安徽省广播电视行业职业技能大赛(有线广播电视机线员)考试题库(含答案)
- 山东省济南市济阳区三校联考2024-2025学年八年级上学期12月月考语文试题
- 糖尿病酮酸症中毒
- Unit 6 Food Lesson 1(说课稿)-2024-2025学年人教精通版(2024)英语三年级上册
- 东北师大附属中学2025届高一物理第一学期期末质量检测试题含解析
- HSE(健康、安全与环境)计划书
- 雨的形成课件教学课件
评论
0/150
提交评论