版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省菏泽市定陶区数学九年级第一学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=2.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或63.如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A.(80+x)(50+x)=5400B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400D.(80+x)(50+2x)=54004.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. B. C. D.5.半径为6的圆上有一段长度为1.5的弧,则此弧所对的圆心角为()A. B. C. D.6.下列事件中,属于必然事件的是()A.小明买彩票中奖 B.投掷一枚质地均匀的骰子,掷得的点数是奇数C.等腰三角形的两个底角相等 D.是实数,7.若点A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函数y=(k>0)的图象上,则y1,y2,y3的大小关系是()A.<< B.<< C.<< D.<<8.如图,数轴上的点,,,表示的数分别为,,,,从,,,四点中任意取两点,所取两点之间的距离为的概率是()A. B. C. D.9.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是()A.<2 B.<3 C.<2且≠0 D.<3且≠210.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A. B.C. D.11.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为12.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为()A.2 B.4 C.6 D.8二、填空题(每题4分,共24分)13.已知,且,则的值为__________.14.如图,在△ABC中,点DE分别在ABAC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6.则线段CD的长为______15.如图,与⊙相切于点,,,则⊙的半径为__________.16.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x﹣1.5x2,该型号飞机着陆后滑行m才能停下来.17.已知线段,点是它的黄金分割点,,设以为边的正方形的面积为,以为邻边的矩形的面积为,则与的关系是__________.18.如图,在平面直角坐标系中,已知A(1.5,0),D(4.5,0),△ABC与△DEF位似,原点O是位似中心.若DE=7.5,则AB=_____.三、解答题(共78分)19.(8分)某地为打造宜游环境,对旅游道路进行改造.如图是风景秀美的观景山,从山脚B到山腰D沿斜坡已建成步行道,为方便游客登顶观景,欲从D到A修建电动扶梯,经测量,山高AC=154米,步行道BD=168米,∠DBC=30°,在D处测得山顶A的仰角为45°.求电动扶梯DA的长(结果保留根号).20.(8分)如图,一次函数图象经过点,与轴交于点,且与正比例函数的图象交于点,点的横坐标是.请直接写出点的坐标(,);求该一次函数的解析式;求的面积.21.(8分)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.22.(10分)如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.23.(10分)如图,一次函数的图象与反比例函数的图象交于点两点,其中点,与轴交于点.求一次函数和反比例函数的表达式;求点坐标;根据图象,直接写出不等式的解集.24.(10分)某软件开发公司开发了A、B两种软件,每种软件成本均为1400元,售价分别为2000元、1800元,这两种软件每天的销售额共为112000元,总利润为28000元.(1)该店每天销售这两种软件共多少个?(2)根据市场行情,公司拟对A种软件降价销售,同时提高B种软件价格.此时发现,A种软件每降50元可多卖1件,B种软件每提高50元就少卖1件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?25.(12分)在矩形ABCD中,O是对角线AC的中点,EF是线段AC的中垂线,交AD、BC于E、F.求证:四边形AECF是菱形.26.在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,这些卡片除数字外,其余都相同.(1)从盒子中任意抽取一张卡片,恰好抽到标有偶数的卡片的概率是多少?(2)先从盒子中任意抽取一张卡片,再从余下的张卡片中任意抽取一张卡片,求抽取的张卡片上标有的数字之和大于的概率(画树状图或列表求解).
参考答案一、选择题(每题4分,共48分)1、D【解析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-=-=,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.2、D【解析】以AB为对角线将图形补成长方形,由已知可得缺失的两部分面积相同,即3×6=x×(9-x),解得x=3或x=6,故选D.【点睛】本题考查了正方形的性质,图形的面积的计算,准确地区分和识别图形是解题的关键.3、B【详解】根据题意可得整副画的长为(80+2x)cm,宽为(50+2x)cm,则根据长方形的面积公式可得:(80+2x)(50+2x)=1.故应选:B考点:一元二次方程的应用4、A【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为,故选A.【点睛】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5、B【分析】根据弧长公式,即可求解.【详解】∵,∴,解得:n=75,故选B.【点睛】本题主要考查弧长公式,掌握是解题的关键.6、C【分析】由题意根据事件发生的可能性大小判断相应事件的类型即可判断选项.【详解】解:A.小明买彩票中奖,是随机事件;B.投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件;C.等腰三角形的两个底角相等,是必然事件;D.是实数,,是不可能事件;故选C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、D【分析】先根据反比例函数中k>1判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵反比例函数y=中k>1,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣2<1,∴点C(﹣2,y2)位于第三象限,∴y2<1,∵1<1<2,∴点A(1,y1),B(2,y2)位于第一象限,∴y1>y2>1.∴y1>y2>y2.故选:D.【点睛】本题考查的是反比例函数的性质,掌握反比例函数图象所在象限及增减性是解答此题的关键.8、D【分析】利用树状图求出可能结果即可解答.【详解】解:画树状图为:共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,所取两点之间的距离为2的概率==.故选D.【点睛】本题考查画树状图或列表法求概率,掌握画树状图的方法是解题关键.9、D【分析】根据方程有两个不相等的实数根结合二次项系数非0,即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【详解】∵关于x的一元二次方程(k−2)x2−2x+1=0有两个不相等的实数根,∴,解得:k<3且k≠2.故选D.【点睛】本题考查根的判别式,解题突破口是得出关于k的一元一次不等式组.10、A【分析】本题可先由二次函数y=ax2+bx+c图象得到字母系数的正负,再与一次函数y=ax+b的图象相比较看是否一致.【详解】A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选A.11、D【解析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选D.12、D【分析】根据三角形的中点的概念求出AB、AC,根据三角形中位线定理求出DF、EF,计算得到答案.【详解】解:∵点E是AC的中点,AB=AC,∴AB=AC=4,∵D是边AB的中点,∴AD=2,∵D、F分别是边、AB、BC的中点,∴DF=AC=2,同理,EF=2,∴四边形ADFE的周长=AD+DF+FE+EA=8,故选:D.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.二、填空题(每题4分,共24分)13、1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.14、【分析】设AD=2x,BD=x,所以AB=3x,易证△ADE∽△ABC,利用相似三角形的性质可求出DE的长度,以及,再证明△ADE∽△ACD,利用相似三角形的性质即可求出得出,从而可求出CD的长度.【详解】设AD=2x,BD=x,∴AB=3x,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴DE=4,,∵∠ACD=∠B,∠ADE=∠B,∴∠ADE=∠ACD,∵∠A=∠A,∴△ADE∽△ACD,∴,设AE=2y,AC=3y,∴,∴AD=y,∴,∴CD=2,故填:2.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.15、【解析】与⊙相切于点,得出△ABO为直角三角形,再由勾股定理计算即可.【详解】解:连接OB,∵与⊙相切于点,∴OB⊥AB,△ABO为直角三角形,又∵,,由勾股定理得故答案为:【点睛】本题考查了切线的性质,通过切线可得垂直,进而可应用勾股定理计算,解题的关键是熟知切线的性质.16、1.【解析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.∵﹣1.5<0,∴函数有最大值.∴,即飞机着陆后滑行1米才能停止.17、【分析】根据黄金分割比得出AP,PB的长度,计算出与即可比较大小.【详解】解:∵点是AB的黄金分割点,,∴,设AB=2,则,∴∴故答案为:.【点睛】本题考查了黄金分割比的应用,熟知黄金分割比是解题的关键.18、2.1.【分析】利用以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k得到位似比为,然后根据相似的性质计算AB的长.【详解】解:∵A(1.1,0),D(4.1,0),∴==,∵△ABC与△DEF位似,原点O是位似中心,∴==,∴AB=DE=×7.1=2.1.故答案为2.1.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.三、解答题(共78分)19、电动扶梯DA的长为70米.【分析】作DE⊥BC于E,根据矩形的性质得到FC=DE,DF=EC,根据直角三角形的性质求出FC,得到AF的长,根据正弦的定义计算即可.【详解】作DE⊥BC于E,则四边形DECF为矩形,∴FC=DE,DF=EC,在Rt△DBE中,∠DBC=30°,∴DEBD=84,∴FC=DE=84,∴AF=AC﹣FC=154﹣84=70,在Rt△ADF中,∠ADF=45°,∴ADAF=70(米),答:电动扶梯DA的长为70米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20、(1);(2);(3)1【分析】(1)根据正比例函数即可得出答案;(2)根据点A和B的坐标,利用待定系数法求解即可;(3)先根据题(2)求出点C的坐标,从而可知OC的长,再利用三角形的面积公式即可得.【详解】(1)将代入正比例函数得,故点的坐标是;(2)设这个一次函数的解析式为把代入,得解方程组,得故这个一次函数的解析式为;(3)在中,令,得即点的坐标是,则的面积故的面积为1.【点睛】本题考查了一次函数的几何应用、利用待定系数法求一次函数的解析式,掌握一次函数的图象与性质是解题关键.21、(1)这所学校需向园林公司支付的树苗款为6000元;(2)这所中学购买了80棵树苗.【分析】(1)由题意按照每棵120元进行计算;(2)设设购买了棵树苗,根据单价×数量=总价列方程,求解.【详解】解:(1)∵,∴(元),∴答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗时所需支付的树苗款为元元,∴该中学购买的树苗超过60棵.又∵,∴购买100棵树苗时每棵树苗的售价恰好降至100元.∵购买树苗超过100棵后,每棵树苗的售价仍为100元,此时所需支付的树苗款超过10000元,而,∴该中学购买的树苗不超过100棵.设购买了棵树苗,依题意,得,化简,得,解得(舍去),.答:这所中学购买了80棵树苗.【点睛】本题考查一元二次方程的实际应用,理解题意弄清题目中的等量关系是本题的解题关键.22、见解析【分析】根据主视图,左视图的定义画出图形即可.【详解】如图,主视图,左视图如图所示.【点睛】本题考查三视图,解题的关键是理解三视图的定义.23、(1)y=-x-2,y=-,(2)C(1,-3),(3)-3<x<0或x>1.【分析】(1)将点B的坐标代入一次函数中即可求出一次函数的表达式,进而求出A点坐标,然后再将A点坐标代入反比例函数中即可求出反比例函数的表达式;(2)将一次函数与反比例函数联立即可求出C点坐标;(3)根据两交点坐标及图象即可得出答案.【详解】解:(1)由点B(-2,0)在一次函数y=-x+b上,得b=-2,∴一次函数的表达式为y=-x-2,由点A(-3,m)在y=-x-2上,得m=1,∴A(-3,1),把A(-3,1)代入数y=(x<0)得k=-3,∴反比例函数的表达式为:y=-,(2)解得或∴C(1,-3)(3)当时,反比例函数的图象在一次函数图象的上方,根据图象可知此时-3<x<0或x>1.∴不等式的解集为-3<x<0或x>1.【点睛】本题主要考查反比例函数与一次函数综合,掌握待定系数法及数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位个人承包合同2024(31篇)
- 战略合作协议书15篇
- 感恩教育活动总结15篇
- 【湘教】第三次月考卷
- 四川省内江市威远中学2025届高三上学期期中考试语文试题(解析版)
- 河南省南阳市新野县 2024 年秋期期中质量调研七年级生物试卷
- 甘肃省兰州市教育局第四片区2024-2025学年七年级上学期期中生物学试卷(无答案)
- 高考语文复习五年高考语文知识点汇编:语言文字应用
- 四川省高考语文五年试题汇编-文学类文本阅读
- 综合科科长培训课件
- 四级翻译完整版本
- 2024年酒店转让居间协议
- 2024年大巴车租赁合同参考样本(二篇)
- 小学生安全教育与自我保护能力培养研究课题研究方案
- 第六单元 (单元测试)-2024-2025学年语文四年级上册单元速记·巧练系列(统编版)
- 2024年福建省公务员录用考试《行测》答案及解析
- 美丽农村路建设指南DB41-T 1935-2020
- 2024年大学试题(计算机科学)-网络工程设计与系统集成考试近5年真题集锦(频考类试题)带答案
- 第四单元测试卷(五)(单元测试)-2024-2025学四年级语文上册统编版
- 落实《中小学德育工作指南》制定的实施方案
- 2023年制药设备行业分析报告及未来五至十年行业发展报告
评论
0/150
提交评论