版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省广南一中2023-2024学年高一上数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.如图,在正方体中,异面直线与所成的角为()A.90° B.60°C.45° D.30°2.若幂函数的图象经过点,则=A. B.C.3 D.93.直线与圆交点的个数为A.2个 B.1个C.0个 D.不确定4.函数的单调递增区间为()A., B.,C., D.,5.若函数在R上单调递减,则实数a的取值范围是()A. B.C. D.6.《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其外形由圆柱和长方体组合而成.已知某组合体由圆柱和长方体组成,如图所示,圆柱的底面直径为1寸,长方体的长、宽、高分别为3.8寸,3寸,1寸,该组合体的体积约为12.6立方寸,若取3.14,则圆柱的母线长约为()A.0.38寸 B.1.15寸C.1.53寸 D.4.59寸7.已知两条绳子提起一个物体处于平衡状态.若这两条绳子互相垂直,其中一条绳子的拉力为50,且与两绳拉力的合力的夹角为30°,则另一条绳子的拉力为()A.100 B.C.50 D.8.若定义域为R的函数满足,且,,有,则的解集为()A. B.C. D.9.已知为三角形的内角,且,则()A. B.C. D.10.已知集合,则A B.C. D.11.为空间中不重合的两条直线,为空间中不重合的两个平面,则①若;②;③;④上述说法正确的是A.①③ B.②③C.①② D.③④12.化简=A.sin2+cos2 B.sin2-cos2C.cos2-sin2 D.±(cos2-sin2)二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数在上单调递减,则实数的取值范围是______14.已知幂函数的图象过点(2,),则___________15.不等式的解集是__________16.已知幂函数的图象过点,则此函数的解析式为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.(1)若,求的值;(2)已知锐角,满足,若,求的值.18.已知全集U={1,2,3,4,5,6,7,8},A={x|x2-3x+2=0},B={x|1≤x≤5,x∈Z},C={x|2<x<9,x∈Z}.求(1)A∪(B∩C);(2)(∁UB)∪(∁UC)19.△ABC的两顶点A(3,7),B(,5),若AC的中点在轴上,BC的中点在轴上(1)求点C的坐标;(2)求AC边上中线BD的长及直线BD的斜率20.设向量a=-1,2,b=(1)求a+2(2)若c=λa+μb,(3)若AB=a+b,BC=a-2b,CD21.在平面直角坐标系中,锐角的顶点是坐标原点O,始边为x轴的非负半轴,终边上有一点(1)求的值;(2)若,且,求角的值22.如图,天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景摩天轮,是天津的地标之一.永乐桥分上下两层,上层桥面预留了一个长方形开口,供摩天轮轮盘穿过,摩天轮的直径为110米,外挂装48个透明座舱,在电力的驱动下逆时针匀速旋转,转一圈大约需要30分钟.现将某一个透明座舱视为摩天轮上的一个点,当点到达最高点时,距离下层桥面的高度为113米,点在最低点处开始计时.(1)试确定在时刻(单位:分钟)时点距离下层桥面的高度(单位:米);(2)若转动一周内某一个摩天轮透明座舱在上下两层桥面之间的运行时间大约为5分钟,问上层桥面距离下层桥面的高度约为多少米?
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】连接,可证明,然后可得即为异面直线与所成的角,然后可求出答案.【详解】连接,因为是正方体,所以和平行且相等所以四边形是平行四边形,所以,所以为异面直线与所成的角.因为是等边三角形,所以故选:B2、B【解析】利用待定系数法求出幂函数y=f(x)的解析式,再计算f(3)的值【详解】设幂函数y=f(x)=xα,其图象经过点,∴2α,解得α,∴f(x),∴f(3)故选B【点睛】本题考查了幂函数的定义与应用问题,是基础题3、A【解析】化为点斜式:,显然直线过定点,且定点在圆内∴直线与圆相交,故选A4、C【解析】利用正切函数的性质求解.【详解】解:令,解得,所以函数的单调递增区间为,,故选:C5、D【解析】要保证函数在R上单调递减,需使得和都为减函数,且x=1处函数值满足,由此解得答案.【详解】由函数在R上单调递减,可得,解得,故选:D.6、C【解析】先求出长方体的体积,进而求出圆柱的体积,利用求出的圆柱体体积和圆柱的底面半径为0.5寸,求出圆柱的母线长【详解】由题意得,长方体的体积为(立方寸),故圆柱的体积为(立方寸).设圆柱的母线长为l,则由圆柱的底面半径为0.5寸,得,计算得:(寸).故选:C7、D【解析】利用向量的平行四边形法则求解即可【详解】如图,两条绳子提起一个物体处于平衡状态,不妨设,根据向量的平行四边形法则,故选:D8、A【解析】根据已知条件易得关于直线x=2对称且在上递减,再应用单调性、对称性求解不等式即可.【详解】由题设知:关于直线x=2对称且在上单调递减由,得:,所以,解得故选:A9、A【解析】根据同角三角函数的基本关系,运用“弦化切”求解即可.【详解】计算得,所以,,从而可计算的,,,选项A正确,选项BCD错误.故选:A.10、C【解析】分析:先解指数不等式得集合A,再根据偶次根式被开方数非负得集合B,最后根据补集以及交集定义求结果.详解:因为,所以,因为,所以因此,选C.点睛:合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图11、A【解析】由线面垂直的性质定理知①正确;②中直线可能在平面内,故②错误;,则内一定有直线//,,则有,所以,③正确;④中可能平行,相交,异面,故④错误,故选A12、A【解析】利用诱导公式化简根式内的式子,再根据同角三角函数关系式及大小关系,即可化简【详解】根据诱导公式,化简得又因为所以选A【点睛】本题考查了三角函数式的化简,关键注意符号,属于中档题二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据指数函数与二次函数的单调性,以及复合函数的单调性的判定方法,求得在上单调递增,在区间上单调递减,再结合题意,即可求解.【详解】令,可得抛物线的开口向上,且对称轴为,所以函数在上单调递减,在区间上单调递增,又由函数,根据复合函数的单调性的判定方法,可得函数在上单调递增,在区间上单调递减,因为函数在上单调递减,则,可得实数的取值范围是.故答案:.14、【解析】由幂函数所过的点求的解析式,进而求即可.【详解】由题设,若,则,可得,∴,故.故答案为:15、【解析】根据对数不等式解法和对数函数的定义域得到关于的不等式组,解不等式组可得所求的解集【详解】原不等式等价于,所以,解得,所以原不等式的解集为故答案为【点睛】解答本题时根据对数函数的单调性得到关于的不等式组即可,解题中容易出现的错误是忽视函数定义域,考查对数函数单调性的应用及对数的定义,属于基础题16、##【解析】设出幂函数,代入点即可求解.【详解】由题意,设,代入点得,解得,则.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)5;(2).【解析】(1)根据给定条件化正余的齐次式为正切,再代入计算作答.(2)根据给定条件利用差角的余弦公式求出,结合角的范围求出即可作答.【详解】(1)因,所以.(2)因,是锐角,则,,又,,因此,,,则,显然,于是得:,解得,所以的值为.18、(1)A∪(B∩C)={1,2,3,4,5}.(2)(∁UB)∪(∁UC)={1,2,6,7,8}【解析】(1)先求集合A,B,C;再求B∩C,最后求A∪(B∩C)(2)先求∁UB,∁UC;再求(∁UB)∪(∁UC)试题解析:解:(1)依题意有:A={1,2},B={1,2,3,4,5},C={3,4,5,6,7,8},∴B∩C={3,4,5},故有A∪(B∩C)={1,2}∪{3,4,5}={1,2,3,4,5}(2)由∁UB={6,7,8},∁UC={1,2};故有(∁UB)∪(∁UC)={6,7,8}∪{1,2}={1,2,6,7,8}19、(1)(2),【解析】(1)由条件利用线段的中点公式求得点C的坐标;(2)求得线段AC的中点D的坐标,再利用两点间的距离公式、斜率公式求得AC边上的中线BD的长及直线BD的斜率试题解析:(1)设,考点:1.待定系数法求直线方程;2.中点坐标公式20、(1)1(2)2(3)证明见解析【解析】(1)先求a+2b=1,0,进而求a+2b;(2)列出方程组,求出λ=-1μ=3,进而求出λ+μ;(【小问1详解】a+2b=【小问2详解】4,-5=λ-1,2+μ1,-1,所以-λ+μ=42λ-μ=-5【小问3详解】因为AC=AB+BC=a+b+21、(1);(2)【解析】(1)根据角的终边上有一点,利用三角函数的定义得到,再利用二倍角的余弦公式求解;(2)利用角的变换,由求解.【详解】(1)∵角的终边上有一点,∴,∴,∴,∴.(2)∵,∴,∵,∴,∴,∵,∴.22、(1)米.(2)米.【解析】(1)如图,建立平面直角坐标系,以为始边,为终边的角为,计算得到答案.(2)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度虚拟现实技术研发实习生实习合同模板2篇
- 二零二四年五金电料项目融资租赁合同范本3篇
- 二零二五年货物运输合同环保条款范本3篇
- 二零二四年度2024年企业信用证开证合同模板下载2篇
- 二零二五版贷款最高额担保合同示范3篇
- 不动产抵押借款合同书范本版B版
- 二零二五年卫生间翻新工程安全管理合同2篇
- 2025年消防技术服务机构资质认证合同8篇
- 二零二五版市场监管合同范本解读与应用3篇
- 2025年环保产业技术人员劳动合同范本参考2篇
- 2025年河北供水有限责任公司招聘笔试参考题库含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 说课稿-2024-2025学年高中英语人教版(2019)必修第一册
- 农发行案防知识培训课件
- 社区医疗抗菌药物分级管理方案
- NB/T 11536-2024煤矿带压开采底板井下注浆加固改造技术规范
- 2024年九年级上德育工作总结
- 2024年储罐呼吸阀项目可行性研究报告
- 除氧器出水溶解氧不合格的原因有哪些
- 冲击式机组水轮机安装概述与流程
- 新加坡SM2数学试题
- 毕业论文-水利水电工程质量管理
评论
0/150
提交评论