2023年云南省保山市高三单招数学备考试卷题库(含答案)_第1页
2023年云南省保山市高三单招数学备考试卷题库(含答案)_第2页
2023年云南省保山市高三单招数学备考试卷题库(含答案)_第3页
2023年云南省保山市高三单招数学备考试卷题库(含答案)_第4页
2023年云南省保山市高三单招数学备考试卷题库(含答案)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年云南省保山市高三单招数学备考试卷题库(含答案)学校:________班级:________姓名:________考号:________

一、单选题(50题)1.设命题p:x>3,命题q:x>5,则()

A.p是q的充分条件但不是q的必要条件

B.p是q的必要条件但不是q的充分条件

C.p是q的充要条件

D.p不是q的充分条件也不是q的必要条件

2.直线l₁的方程为x-√3y-√3=0,直线l₂的倾斜角为l₁倾斜角的2倍,且l₂经过原点,则l₂的方程为()

A.2x-√3y=0B.2x+√3y=0C.√3x+y=0D.√3x—y=0

3.已知向量a=(1,1),b=(0,2),则下列结论正确的是()

A.a//bB.(2a-b)⊥bC.2a=bD.a*b=3

4.有2名男生和2名女生,李老师随机地按每两人一桌为他们排座位,一男一女排在一起的概率为()

A.2/3B.1/2C.1/3D.1/4

5.“θ是锐角”是“sinθ>0”的()

A.充分不必条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件

6.设f((x)是定义在R上的奇函数,已知当x≥0时,f(x)=x³-4x³,则f(-1)=()

A.-5B.-3C.3D.5

7.抛物线y²=-8x的焦点坐标是()

A.(-2,0)B.(2,0)C.(0,-2)D.(0,2)

8.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()

A.12种B.18种C.36种D.54种

9.在(0,+∞)内,下列函数是增函数的是()

A.y=sinxB.y=1/xC.y=x²D.y=3-x

10.若不等式2x²+2ax+b<0的解集是{x|-1<x

A.-5B.1C.2D.3

11.如果a₁,a₂,…,a₈为各项都大于零的等差数列,公差d≠0,则().

A.a₁a₈>a₄a₅B.a₁a₈<a₄a₅C.a₁+a₈<a₄+a₅D.a₁a₈=a₄a₅

12.某射手射中10环的概率为0.28,射中9环的概率为0.24,射中8环的概率为0.19,则这个射手一次射中低于8环的概率为()

A.0.71B.0.29C.0.19D.0.52

13.盒内装有大小相等的3个白球和1个黑球,从中摸出2个球,则2个球全是白球的概率是()

A.3/4B.2/3C.1/3D.1/2

14.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()

A.3/10B.1/10C.1/9D.1/8

15.若抛物线y²=2px(p>0)的准线与圆(x-3)²+y²=16相切,则p的值为()

A.1/2B.1C.2D.4

16.已知直线l的倾斜角是45,在轴上的截距是2,则直线l的方程是()

A.x-y-2=0B.x一y+2=0C.z+y+2=0D.x+y-2=0

17.与5Π/3终边相同的角是()

A.2Π/3B.-2Π/3C.-Π/3D.Π/3

18.以点P(-4,3)为圆心的圆与直线2x+y-5=0相离,则圆半径取值范围是()

A.(0,2)B.(0,√5)C.(0,2√5)D.(0,10)

19.已知点A(1,1)和点B(5,5),则线段AB的垂直平分线方程为()

A.x+y-6=0B.2x+y一6=0C.z+y+6=0D.4x+y+6=0

20.在等差数列{an}中,a2+a9=16,则该数列前10项的和S10的值为()

A.66B.78C.80D.86

21.设a=lg2,b=lg3,c=lg5,则lg30=()

A.abcB.a+b+cC.a-b-cD.无法确定

22.下列函数中在定义域内既是奇函数又是增函数的是()

A.y=x-3B.y=-x²C.y=3xD.y=2/x

23.下列幂函数中过点(0,0),(1,1)的偶函数是()

A.y=x^(1/2)B.y=x^4C.y=x^(-2)D.y=x^(1/3)

24.直线y=x+1与圆x²+y²=1的位置关系是()

A.相切B.相交但直线不过圆心C.直线过圆心D.相离

25.过点P(1,-1)且与直线3x+y-4=0平行的直线方程为()

A.3x+y-2=0B.x-3y-4=0C.3x-y-4=0D.x+3y+2=0

26.从某班的21名男生和20名女生中,任意选一名男生和一名女生代表班级参加评教座谈会则不同的选派方案共有()

A.41种B.420种C.520种D.820种

27.函数f(x)=(√x)²的定义域是()

A.RB.(-∞,0)U(0,+∞)C.(0,+∞)D.[0,+∞)

28.设a=log₃2,b=log₅2,c=log₂3,则

A.a>c>bB.b>c>aC.c>b>aD.c>a>b

29.倾斜角为135°,且在x轴上截距为3的直线方程是()

A.x+y+3=0B.x+y-3=0C.x-y+3=0D.x-y-3=0

30.若向量a=(-2,4)与b=(3,y)平行,则y的值是()

A.-6B.6C.-4D.4

31.已知过点A(a,2),和B(2,5)的直线与直线x+y+4=0垂直,则a的值为()

A.−2B.−2C.1D.2

32.若P是两条异面直线l,m外的任意一点,则()

A.过点P有且仅有一条直线与l,m都平行

B.过点P有且仅有一条直线与l,m都垂直

C.过点P有且仅有一条直线与l,m都相交

D.过点P有且仅有一条直线与l,m都异面

33.抛物线y²=8x,点P到点(2,0)的距离为3,则点P到直线x=-2的距离是()

A.2√2B.2C.3D.4

34.不等式(x-1)(x-2)<2的解集是()

A.{x∣x<3}B.{x∣x<0}C.{x∣0<x3}

35.若等差数列前两项为-3,3,则数列的公差是多少().

A.-3B.3C.0D.6

36.过点(1,2)且与直线+y+1=0垂直的直线方程是()

A.x-y-1=0B.y-x-1-0C.x+y-1=0D.x+y+2=0

37.若向量a,b,c满足a∥b且a⊥c,则c·(a+2b)=()

A.4B.3C.2D.0

38.设奇函数f(x)是定义在R上的增函数,且f(-1)=2,且满足f(x²-2x+2)≥一2,则x的取值范围是()

A.ØB.(2,+∞)C.RD.(2,+∞)D∪(-∞,0)

39.下列函数在区间(0,+∞)上为减函数的是()

A.y=3x-1B.f(x)=log₂xC.g(x)=(1/2)^xD.A(x)=sinx

40.已知A(1,1),B(-1,0),C(3,-1)三点,则向量AB*向量AC=()

A.-6B.-2C.2D.3

41.在等比数列{an}中,已知a₃,a₅是方程x²-12x+9=0的两个根,则a₄=()

A.12B.9C.±2√3D.±3

42.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条直线与一个平面平行,则另一条直线一定与这个平面平行.

A.0B.1C.2D.3

43.已知角α终边上一点的坐标为(-5,-12),则下列说法正确的是()

A.sinα=12/13B.tanα=5/12C.cosα=-12/13D.cosα=-5/13

44.X>3是X>4的()

A.充分条件B.必要条件C.充要条件D.即不充分也不必要条件

45.-240°是()

A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

46.从1、2、3、4、5五个数中任取一个数,取到的数字是3或5的概率为()

A.1/5B.2/5C.3/5D.4/5

47.两个正方体的体积之比是1:8,则这两个正方体的表面积之比是()

A.1:2B.1:4C.1:6D.1:8

48.若平面α//平面β,直线a⊂α,直线b⊂β那么直线a、b的位置关系是()

A.垂直B.平行C.异面D.不相交

49.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()

A.12种B.24种C.30种D.36种

50.若直线l过点(-1,2)且与直线2x-3y+1=0平行,则l的方程是().

A.3x+2y+8=0B.2x-3y+8=0C.2x-3y-8=0D.3x+2y-8=0

二、填空题(20题)51.从1到40这40个自然数中任取一个,是3的倍数的概率是()

52.等比数列{an}中,a₃=1/3,a₇=3/16,则a₁=________。

53.已知二次函数y=x²-mx+1的图象的对称轴方程为=2则此函数的最小值为________。

54.已知函数y=2x+t经过点P(1,4),则t=_________。

55.双曲线(x²/4)-(y²/32)=1的离心率e=_______。

56.若直线2x-y-2=0,与直线x+ay+1=0平行,则实数a的取值为_____________。

57.向量a=(一2,1),b=(k,k+1),若a//b,则k=________。

58.已知cos(Π-a)=1/2,则cos2a=_________。

59.(√2-1)⁰+lg5+lg2-8^⅓=___________。

60.设{an}是等差数列,且a₃=5,a₅=9,则a₂·a₆=()

61.已知数据10,x,11,y,12,z的平均数为8,则x,y,z的平均数为________。

62.小明想去参加同学会,想从3顶帽子、5件衣服、4条子中各选一样穿戴,则共有________种搭配方法。

63.已知函数f(x)是定义R上的奇函数,当x∈(-∞,0)时,f(x)=2x³+x²,则f(2)=________。

64.已知函数y=f(x)是奇函数,且f(2)=−5,则f(−2)=_____________;

65.以点(2,1)为圆心,且与直线4x-3y=0相切的圆的标准方程为__________。

66.设圆的方程为x²+y²-4y-5=0,其圆心坐标为________。

67.已知数据x₁,x₂,x₃,x₄,x₅,的平均数为80,则数据x₁+1,x₂+2,x₃+3,x₄+4,x₅+5的平均数为________。

68.4张卡片上分别写有3,4,5,6,从这4张卡片中随机取两张,则取出的两张卡片上数字之和为偶数的概率为______。

69.已知5件产品中有3件正品,2件次品,若从中任取一件产品,则取出的产品是正品的概率等于_________;

70.已知向量a=(1/2,cosα),b=(-√3/2,sinα),且a⊥b,则sinα=______。

三、计算题(10题)71.求函数y=cos²x+sinxcosx-1/2的最大值。

72.解下列不等式x²>7x-6

73.解下列不等式:x²≤9;

74.已知tanα=2,求(sinα+cosα)/(2sinα-cosα)的值。

75.某社区从4男3女选2人做核酸检测志愿者,选中一男一女的概率是________。

76.已知在等差数列{an}中,a1=2,a8=30,求该数列的通项公式和前5项的和S5;

77.求证sin²α+sin²β−sin²αsin²β+cos²αcos2²β=1;

78.计算:(4/9)^½+(√3+√2)⁰+125^(-⅓)

79.在△ABC中,角A,B,C所对应的边分别是a,b,c,已知b=2√2,c=√5,cosB=√5/5。(1)求a的值;(2)求△ABC的面积

80.书架上有3本不同的语文书,2本不同的数学书,从中任意取出2本,求(1)都是数学书的概率有多大?(2)恰有1本数学书概率

参考答案

1.B考查充要条件概念,x>5=>x>3,所以p是q的必要条件;又因为x>3=>x>>5,所以p不是q的充分条件,故选B.考点:充分必要条件的判定.

2.D

3.B

4.A

5.A由sinθ>0,知θ为第一,三象限角或y轴正半轴上的角,选A!

6.C

7.A

8.B[解析]讲解:3C₄²C₄²=18种

9.C

10.A

11.B[解析]讲解:等差数列,a₁a₈=a₁²+7da₁,a₄a₅=a₁²+7da₁+12d²,所以a₁a₈<a₄a₅

12.B

13.D

14.A

15.C[解析]讲解:题目抛物线准线垂直于x轴,圆心坐标为(3,0)半径为4,与圆相切则为x=−1或x=7,由于p>0,所以x=−1为准线,所以p=2

16.A

17.C

18.C

19.A

20.B

21.Blg30=lg(2*3*5)=lg2+lg3+lg5=a+b+c,故选B.考点:对数的运算.

22.C

23.B[解析]讲解:函数图像的考察,首先验证是否过两点,C定义域不含x=0,因为分母有自变量,然后验证偶函数,A选项定义域没有关于原点对称,D选项可以验证是奇函数,答案选B。

24.B圆x²+y²=1的圆心坐标为(0,0),半径长为1,则圆心到直线y=x+1的距离d=1/√2=√2/2,因为0<√2/2<1,所以直线y=x+1与圆x²+y²=1相交但直线不过圆心.考点:直线与圆的位置关系.

25.A解析:考斜率相等

26.B

27.D因为二次根式内的数要求大于或等于0,所以x≥0,即定义域为[0,+∞),选D.考点:函数二次根式的定义域

28.D

29.B[答案]B[解析]讲解:考察直线方程的知识,斜率为倾斜角的正切值k=tan135°=-1,x轴截距为3则过定点(3,0),所以直线方程为y=-(x-3)即x+y-3=0,选B

30.A

31.B

32.B

33.A

34.C[答案]C[解析]讲解:不等式化简为x²-3x<0,解得答案为0<x<3

35.D[解析]讲解:考察等差数列的性质,公差为后一项与前一项只差,所以公差为d=3-(-3)=6

36.B

37.D

38.C

39.C[解析]讲解:考察基本函数的性质,选项A,B为增函数,D为周期函数,C指数函数当底数大于0小于1时,为减函数。

40.BAB=(-1,0)-(1,1)=(-2,-1),AC=(3,-1)-(1,1)=(2,-2),AB*AC=(-2)*2+(-1)´*(-2)=-2考点:平面向量数量积.

41.D

42.C

43.D

44.B

45.B

46.B

47.B[解析]讲解:由于立方体的体积为棱长的立方,当体积比为1:8的时候,棱长比就应该为1:2,表面积又是六倍棱长的平方,所以表面积之比为1:4。

48.D[解析]讲解:两面平行不会有交点,面内的直线也不可能相交,选D

49.B[解析]讲解:C²₄*2*2=24

50.B[解析]讲解:考察直线方程,平行直线方程除了常数,其余系数成比例,排除A,D,直线过点(-1,2),则B

51.13/40

52.4/9

53.-3

54.2

55.3

56.-1/2

57.-2/3

58.-1/2

59.0

60.33

61.5

62.60

63.12

64.5

65.(x-2)²+(y-1)²=1

66.y=(1/2)x+2y

67.83

68.1/3

69.3/5

70.√3/2

71.解:y=(1+cos2x)/2+1/2sin2x=√2/2sin(2x+Π/4)所以sin(2x+Π/4)∈[-1,1],所以原函数的最大值为√2/2。

72.解:因为x²>7x-6所以x²-7x+6>0所以(x-1)(x-6)>0所以x>6或x<1所以原不等式的解集为{x|x>6或x<1}

73.解:因为x²≤9所以x²-9≤0所以(x+3)(x-3)≤0所以-3≤x≤3所以原不等式的解集为{x|-3≤x≤3}

74.解:(sinα+cosα)/(2sinα-cosα)=(sinα/cosα+cosα/cosα)/(2sinα/cosα-cosα/cosα)=(tanα+1)/(2tanα-1)=(2+1)/(2*2-1)=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论