




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昭通市大关县一中2024届高一数学第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则下列选项中正确的是()A.函数是单调增函数B.函数的值域为C.函数为偶函数D.函数的定义域为2.“是”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分又不必要3.为了得到函数图象,只需把的图象上的所有点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位4.高斯是德国著名的数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A. B.C. D.5.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为()A. B.C. D.6.已知为平面,为直线,下列命题正确的是A.,若,则B.,则C.,则D.,则7.化简A. B.C.1 D.8.已知,,为正实数,满足,,,则,,的大小关系为()A. B.C. D.9.下列函数既是定义域上的减函数又是奇函数的是A. B.C. D.10.中国高速铁路技术世界领先,高速列车运行时不仅速度比普通列车快而且噪声更小.我们用声强I(单位:W/m2)表示声音在传播途径中每1平方米面积上声能流密度,声强级L1(单位:dB)与声强I的函数关系式为:.若普通列车的声强级是95dB,高速列车的声强级是45dB,则普通列车的声强是高速列车声强的()A.倍 B.倍C.倍 D.倍二、填空题:本大题共6小题,每小题5分,共30分。11.直线与直线平行,则实数的值为_______.12.若函数与函数的最小正周期相同,则实数______13.已知幂函数的图象经过点,则___________.14.已知定义在上的奇函数,当时,,当时,________15.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为____16.已知某扇形的弧长为,面积为,则该扇形的圆心角(正角)为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)求的最小正周期;(2)当时,求:(ⅰ)的单调递减区间;(ⅱ)的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值.18.已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点.(1)求;(2)求的值.19.在平行四边形中,过点作的垂线交的延长线于点,.连结交于点,如图1,将沿折起,使得点到达点的位置.如图2.证明:直线平面若为的中点,为的中点,且平面平面求三棱锥的体积.20.已知函数的部分图象如图所示,且在处取得最大值,图象与轴交于点(1)求函数的解析式;(2)若,且,求值21.已知函数的周期是.(1)求的单调递增区间;(2)求在上的最值及其对应的的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】应用换元法求的解析式,进而求其定义域、值域,并判断单调性、奇偶性,即可知正确选项.【题目详解】由题意,由,则,即.令,则∴,其定义域为不是偶函数,又故不单调增函数,易得,则,∴.故选:D2、A【解题分析】根据充分必要条件的定义判断【题目详解】若x=1,则x2-4x+3=0,是充分条件,若x2-4x+3=0,则x=1或x=3,不是必要条件.故选:A.3、D【解题分析】利用三角函数图象的平移规律可得结论.【题目详解】因为,所以,为了得到函数的图象,只需把的图象上的所有点向右平移个单位.故选:D.4、B【解题分析】先利用换元思想求出函数的值域,再分类讨论,根据新定义求得函数的值域【题目详解】(),令,可得,在上递减,在上递增,时,有最小值,又因为,所以当时,,即函数的值域为,时,;时,;时,;的值域是故选:B【题目点拨】思路点睛:新定义是通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.5、C【解题分析】根据直观图的面积与原图面积的关系为,计算得到答案.【题目详解】直观图的面积,设原图面积,则由,得.故选:C.【题目点拨】本题考查了平面图形的直观图的面积与原面积的关系,三角形的面积公式,属于基础题.6、D【解题分析】选项直线有可能在平面内;选项需要直线在平面内才成立;选项两条直线可能异面、平行或相交.选项符合面面平行的判定定理,故正确.7、D【解题分析】先考虑分母化简,利用降次公式,正切的两角和与差公式打开,整理,可得答案【题目详解】化简分母得.故原式等于.故选D【题目点拨】本题主要考查了两角和与差公式以及倍角公式.属于基础题8、D【解题分析】设,,,,在同一坐标系中作出函数的图象,可得答案.【题目详解】设,,,在同一坐标系中作出函数的图象,如图为函数的交点的横坐标为函数的交点的横坐标为函数的交点的横坐标根据图像可得:故选:D9、C【解题分析】根据函数的单调性与奇偶性对选项中的函数进行判断即可【题目详解】对于A,f(x)=|x|,是定义域R上的偶函数,∴不满足条件;对于B,f(x),在定义域(﹣∞,0)∪(0,+∞)上是奇函数,且在每一个区间上是减函数,不能说函数在定义域上是减函数,∴不满足条件;对于C,f(x)=﹣x3,在定义域R上是奇函数,且是减函数,∴满足题意;对于D,f(x)=x|x|,在定义域R上是奇函数,且是增函数,∴不满足条件故答案为:C【题目点拨】本题主要考查函数的单调性和奇偶性,意在考查学生对这些知识的掌握水平和分析推理能力.10、B【解题分析】根据函数模型,列出关系式,进而结合对数的运算性质,可求出答案.【题目详解】普通列车的声强为,高速列车声强为,解:设由题意,则,即,所以,即普通列车的声强是高速列车声强的倍.故选:B.【题目点拨】本题考查函数模型、对数的运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据直线一般式,两直线平行则有,代入即可求解.【题目详解】由题意,直线与直线平行,则有故答案为:【题目点拨】本题考查直线一般式方程下的平行公式,属于基础题.12、【解题分析】求出两个函数的周期,利用周期相等,推出a的值【题目详解】:函数的周期是;函数的最小正周期是:;因为周期相同,所以,解得故答案为【题目点拨】本题是基础题,考查三角函数的周期的求法,考查计算能力13、##【解题分析】根据题意得到,求出的值,进而代入数据即可求出结果.【题目详解】由题意可知,即,所以,即,所以,因此,故答案为:.14、【解题分析】设,则,代入解析式得;再由定义在上的奇函数,即可求得答案.【题目详解】不妨设,则,所以,又因为定义在上的奇函数,所以,所以,即.故答案为:.15、【解题分析】解直角三角形AOC,求出半径AO,代入弧长公式求出弧长的值解:如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,并延长OC交于D,则∠AOD=∠BOD=1,AC=AB=1Rt△AOC中,r=AO==,从而弧长为α×r=2×=,故答案为考点:弧长公式16、【解题分析】根据给定条件求出扇形所在圆的半径即可计算作答.【题目详解】设扇形所在圆的半径为,扇形弧长为,即,由扇形面积得:,解得,所以该扇形的圆心角(正角)为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(ⅰ)(ⅱ)的最大值为,此时;的最小值为,此时【解题分析】(1)先用三角恒等变换化简得到,利用最小正周期公式求出答案;(2)在第一问的基础上,整体法求解函数单调区间,根据单调区间求解最值,及相应的自变量的值.【小问1详解】,,的最小正周期为【小问2详解】(ⅰ),,,的单调递减区间是,且由,得,所以函数的单调递减区间为(ⅱ)由(1)知,在上单调递减,在上单调递增.且,,,所以,当时,取最大值为;当时,取最小值为18、(1);(2).【解题分析】(1)根据任意角三角函数的定义即可求解tanθ;(2)分式分子分母同时除以cos2θ化弦为切即可.【小问1详解】∵角的终边经过点,由三角函数的定义知,;【小问2详解】∵,∴.19、(1)见解析;(2)【解题分析】(1)在平面图形内找到,则在立体图形中,可证面.(2)解法一:根据平面平面,得到平面,得到到平面的距离,根据平面图形求出底面平的面积,求得三棱锥的体积.解法二:找到三棱锥的体积与四棱锥的体积之间的关系比值关系,先求四棱锥的体积,从而得到三棱锥的体积.【题目详解】证明:如图1,中,所以.所以也是直角三角形,,如图题2,所以平面.解法一:平面平面,且平面平面,平面,平面.取的中点为,连结则平面,即为三棱锥的高..解法二:平面平面,且平面平面,平面,平面.为的中点,三棱锥的高等于.为的中点,的面积是四边形的面积的,三棱锥的体积是四棱锥的体积的三棱锥的体积为.【题目点拨】本题考查线面垂直的判定,面面垂直的性质,以及三棱锥体积的计算,都是对基础内容的考查,属于简单题.20、(1)(2)【解题分析】(1)根据图象可得函数的周期,从而求得,结合函数在处取得最大值,可求得的值,再根据图象与轴交于点,可求得,从而可得解;(2)根据(1)及角的范围求得,,再利用两角差的余弦公式进行化简可求解.【小问1详解】由图象可知函数的周期为,所以.又因为函数在处取得最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语言、文化与交际知到课后答案智慧树章节测试答案2025年春湖南大学
- 江苏省徐州市2024-2025学年高一上学期1月期末信息技术试题 含解析
- 2024年自然资源部第一海洋研究所招聘真题
- 2025汽车零部件供应商合同管理咨询协议
- 高一英语学案:预习导航SectionⅡ
- 深圳施工总价合同范本
- 2024年山东济南福和数控机床有限公司招聘真题
- 2024年梅河口市市属事业单位考试真题
- 2024年廉江市市属事业单位考试真题
- 光缆颗粒采购合同范本
- 2024陕西西安市长安城乡建设开发限公司招聘50人(高频重点提升专题训练)共500题附带答案详解
- 湖北省荆、荆、襄、宜四地七校考试联盟2025届高三下学期联考历史试题含解析
- 续家谱跋的范文
- 2022年中国食品药品检定研究院招聘26人笔试历年典型考题及考点剖析附带答案详解
- 人教小学数学六年级下册整 理和复习《整数》教学课件
- 电动伸缩雨棚合同范本
- 中国信息消费发展态势报告(2022年)
- G-B-Z 25320.1003-2023 电力系统管理及其信息交换 数据和通信安全 第100-3部分:IEC 62351-3的一致性测试用例和包括TCP-IP协议集的安全通信扩展 (正式版)
- 小学毕业会考数学试卷附参考答案(a卷)
- 急救知识科普完整版课件
- 华为跨部门协同机制建设
评论
0/150
提交评论