版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省大连渤海高级中学高一数学第一学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与直线垂直,则()A.1 B.2C. D.2.函数的单调递减区间为A. B.C. D.3.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号12345678频数1013141513129第3组的频数和频率分别是()A.和14 B.14和C.和24 D.24和4.“”是“为锐角”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既非充分又非必要条件5.设,,则的结果为()A. B.C. D.6.已知函数,若方程有五个不同的实数根,则实数的取值范围为()A. B.C. D.7.设,,若,则的最小值为()A. B.6C. D.8.将的图象向右平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到的图象,则A. B.C. D.9.若,且则与的夹角为()A. B.C. D.10.如图是函数在一个周期内的图象,则其解析式是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若关于的不等式在[0,1]上有解,则实数的取值范围为______12.求值:___________.13.已知指数函数(且)在区间上的最大值是最小值的2倍,则______14.已知一组样本数据x1,x2,…,x10,且++…+=2020,平均数,则该组数据的标准差为_________.15.若数据的方差为3,则数据的方差为__________16.对,不等式恒成立,则m的取值范围是___________;若在上有解,则m的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲、乙二人独立破译同一密码,甲破译密码的概率为0.7,乙破译密码的概率为0.6.记事件A:甲破译密码,事件B:乙破译密码.(1)求甲、乙二人都破译密码的概率;(2)求恰有一人破译密码的概率.18.已知函数.(1)若是定义在R上的偶函数,求a的值及的值域;(2)若在区间上是减函数,求a的取值范围.19.化简求值:(1);(2)已知,求的值20.已知,且.(1)求;(2)若,,求的值.21.在三棱锥中,,,O是线段AC的中点,M是线段BC的中点.(1)求证:PO⊥平面ABC;(2)求直线PM与平面PBO所成的角的正弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】分析直线方程可知,这两条直线垂直,斜率之积为-1.【题目详解】由题意可知,即故选:B.2、C【解题分析】由幂函数的性质知,函数的图像以原点为对称中心,在均是减函数故答案为C3、B【解题分析】根据样本容量和其它各组的频数,即可求得答案.【题目详解】由题意可得:第3组频数为,故第3组的频率为,故选:B4、B【解题分析】根据充分条件与必要条件的定义判断即可.【题目详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件.故“”是“为锐角”必要不充分条件.故选:B.【题目点拨】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.5、D【解题分析】根据交集的定义计算可得;【题目详解】解:因为,,所以故选:D6、A【解题分析】由可得或,数形结合可方程只有解,则直线与曲线有个交点,结合图象可得出实数的取值范围.【题目详解】由可得或,当时,;当时,.作出函数、、图象如下图所示:由图可知,直线与曲线有个交点,即方程只有解,所以,方程有解,即直线与曲线有个交点,则.故选:A.7、C【解题分析】由已知可得,将代数式与相乘,展开后利用基本不等式可求得所求代数式的最小值.【题目详解】,,,由可得,所以,,当且仅当时,等号成立.因此,的最小值为.故选:C.【题目点拨】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8、A【解题分析】由三角函数图象的平移变换及伸缩变换可得:将的图象所有点的横坐标缩短到原来的倍,再把所得图象向左平移个单位,即可得到的图象,得解【题目详解】解:将的图象所有点的横坐标缩短到原来的倍得到,再把所得图象向左平移个单位,得到,故选A【题目点拨】本题主要考查了三角函数图象的平移变换及伸缩变换,属于简单题9、C【解题分析】因为,设与的夹角为,,则,故选C考点:数量积表示两个向量的夹角10、B【解题分析】通过函数的图象可得到:A=3,,,则,然后再利用点在图象上求解.,【题目详解】由函数的图象可知:A=3,,,所以,又点在图象上,所以,即,所以,即,因为,所以所以故选:B【题目点拨】本题主要考查利用三角函数的图象求解析式,还考查了运算求解的能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】不等式在[0,1]上有解等价于,令,则.【题目详解】由在[0,1]上有解,可得,即令,则,因为,所以,则当,即时,,即,故实数的取值范围是故答案为【题目点拨】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.12、.【解题分析】根据指数幂的运算性质,结合对数的运算性质进行求解即可.【题目详解】,故答案为:13、或2【解题分析】先讨论范围确定的单调性,再分别进行求解.【题目详解】①当时,,得;②当时,,得,故或2故答案为:或2.14、9【解题分析】根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案【题目详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:9.15、12【解题分析】所求方差为,填16、①.②.【解题分析】(1)根据一元二次函数的图象,考虑开口方向和判别式,即可得到答案;(2)利用参变分离,将问题转化为不等式在上有解;【题目详解】(1)关于x的不等式函数对于任意实数x恒成立,则,解得m的取值范围是.(2)若在上有解,则在上有解,易知当时,当时,此时记,则,,在上单调递减,故,综上可知,,故m的取值范围是.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.42;(2)0.46.【解题分析】(1)由相互独立事件概率的乘法公式运算即可得解;(2)由互斥事件概率的加法公式及相互独立事件概率的乘法公式运算即可得解.【题目详解】(1)事件“甲、乙二人都破译密码”可表示为AB,事件A,B相互独立,由题意可知,所以;(2)事件“恰有一人破译密码”可表示为,且,互斥所以.18、(1),;(2)【解题分析】(1)根据偶函数的定义,求出,得,验证定义域是否关于原点对称,求出真数的范围,再由对数函数的单调性,即可求出值域;(2),由条件可得,在上是减函数,且在上恒成立,根据二次函数的单调性,得出参数的不等式,即可求解.【题目详解】解:(1)因为是定义在R上的偶函数,所以,所以,故,此时,,定义域为R,符合题意.令,则,所以,故的值域为.(2)设.因为在上是减函数,所以在上是减函数,且在上恒成立,故解得,即.【题目点拨】本题考查函数的性质,涉及到函数的奇偶性、单调性、值域,研究函数的性质要注意定义域,属于中档题.19、(1);(2).【解题分析】(1)根据指数与对数的运算公式求解即可;(2)根据诱导公式,转化为其次问题进行求解即可.【题目详解】(1)原式.(2)原式.20、(1)(2)【解题分析】(1)根据三角函数相关公式化简求解;(2)根据三角恒等变换化简求解.【小问1详解】解:,由,得,解得又,所以.【小问2详解】解:若,,则,因为,又,所以,所以,所以21、(1)证明见解析;(2)【解题分析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省南昌2024-2025学年八年级上学期期末考试英语试卷(含解析无听力原文及音频)
- 2024年高端装备制造居间合同
- 2024新车购车简单的协议书范本
- 2024收养孤残儿童协议书范本参考3篇
- 中国青年政治学院《审计学原理及实务》2023-2024学年第一学期期末试卷
- 浙江中医药大学滨江学院《酒店规划与管理》2023-2024学年第一学期期末试卷
- 昭通卫生职业学院《三笔字训练》2023-2024学年第一学期期末试卷
- 《畜禽中毒病防制》课件
- 旅游行业人力资源总结
- 2024连锁店保密合同
- 汽机油管道安装方案指导
- 2022年中国城市英文名称
- 小龙虾高密度养殖试验基地建设项目可行性研究报告
- 《桥梁工程计算书》word版
- 中考《红星照耀中国》各篇章练习题及答案(1-12)
- 下肢皮牵引护理PPT课件(19页PPT)
- 舒尔特方格55格200张提高专注力A4纸直接打印版
- 施工单位现场收方记录表
- 参会嘉宾签到表
- 人力资源管理之绩效考核 一、什么是绩效 所谓绩效简单的讲就是对
- 流动资金测算公式
评论
0/150
提交评论