版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三湘教育联盟2024届高一上数学期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则2.函数的一部分图像如图所示,则()A. B.C. D.3.现对有如下观测数据345671615131417记本次测试中,两组数据的平均成绩分别为,两班学生成绩的方差分别为,,则()A., B.,C., D.,4.如图,已知的直观图是一个直角边长是1的等腰直角三角形,那么的面积是A. B.C.1 D.5.如图,边长为的正方形是一个水平放置的平面图形的直观图,则图形的面积是A. B.C. D.6.在轴上的截距分别是,4的直线方程是A. B.C. D.7.计算:的值为A. B.C. D.8.已知定义在R上的奇函数f(x)满足,当时,,则()A. B.C. D.9.点关于直线的对称点是A. B.C. D.10.已知函数,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则的取值范围为()A.(﹣1,+∞) B.(﹣1,1]C.(﹣∞,1) D.[﹣1,1)二、填空题:本大题共6小题,每小题5分,共30分。11.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是________.12.已知集合,集合,则________13.如图是某个铁质几何体的三视图,其中每个小正方形格子的边长均为个长度单位,将该铁质几何体熔化,制成一个大铁球,如果在熔制过程中材料没有损耗,则大铁球的表面积为_______________________.14.已知,,与的夹角为60°,则________.15.已知一个扇形的面积为,半径为,则其圆心角为___________.16.已知一扇形的弧所对的圆心角为54°,半径r=20cm,则扇形的周长为___cm.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在①函数的图象向右平移个单位长度得到的图象,图象关于原点对称;②向量,;③函数.这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数的图象相邻两条对称轴之间的距离为.(1)求;(2)求函数在上的单调递减区间.18.已知函数.(1)求的值及的单调递增区间;(2)求在区间上的最大值和最小值.19.(1)从区间内任意选取一个实数,求事件“”发生的概率;(2)从区间内任意选取一个整数,求事件“”发生的概率.20.设全集U=R,集合,(1)当时,求;(2)若A∩B=A,求实数a的取值范围21.对于函数,若在定义域内存在实数,满足,则称“局部中心函数”.(1)已知二次函数(),试判断是否为“局部中心函数”,并说明理由;(2)若是定义域为上的“局部中心函数”,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】,,故选D.考点:点线面的位置关系.2、D【解题分析】由图可知,,排除选项,由,排除选项,故选.3、C【解题分析】利用平均数以及方差的计算公式即可求解.【题目详解】,,,,故,故选:C【题目点拨】本题考查了平均数与方差,需熟记公式,属于基础题.4、D【解题分析】根据斜二测画法的基本原理,将平面直观图与还原为原几何图形,利用三角形面积公式可得结果.【题目详解】平面直观图与其原图形如图,直观图是直角边长为的等腰直角三角形,还原回原图形后,边还原为长度不变,仍为,直观图中的在原图形中还原为长度,且长度为,所以原图形的面积为,故选D.【题目点拨】本题主要考查直观图还原几何图形,属于简单题.利用斜二测画法作直观图,主要注意两点:一是与轴平行的线段仍然与与轴平行且相等;二是与轴平行的线段仍然与轴平行且长度减半.5、D【解题分析】根据直观图画出原图可得答案.【题目详解】由直观图画出原图,如图,因为,所以,,则图形的面积是.故选:D6、B【解题分析】根据直线方程的截距式写出直线方程即可【题目详解】根据直线方程的截距式写出直线方程,化简得,故选B.【题目点拨】本题考查直线的截距式方程,属于基础题7、A【解题分析】运用指数对数运算法则.【题目详解】.故选:A.【题目点拨】本题考查指数对数运算,是简单题.8、B【解题分析】由题意得,因为,则,所以函数表示以为周期的周期函数,又因为为奇函数,所以,所以,,,所以,故选B.9、A【解题分析】设对称点为,则,则,故选A.10、B【解题分析】由方程f(x)=a,得到x1,x2关于x=﹣1对称,且x3x4=1;化简,利用数形结合进行求解即可【题目详解】作函数f(x)的图象如图所示,∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2关于x=﹣1对称,即x1+x2=﹣2,0<x3<1<x4,则|log2x3|=|log2x4|,即﹣log2x3=log2x4,则log2x3+log2x4=0,即log2x3x4=0,则x3x4=1;当|log2x|=1得x=2或,则1<x4≤2;≤x3<1;故;则函数y=﹣2x3+,在≤x3<1上为减函数,则故当x3=取得y取最大值y=1,当x3=1时,函数值y=﹣1.即函数取值范围(﹣1,1]故选B【题目点拨】本题考查分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【题目详解】长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:,则这个球的表面积是:故答案为:【题目点拨】本题考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力12、【解题分析】由交集定义计算【题目详解】由题意故答案为:13、【解题分析】由已知得该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,根据圆锥和球体的体积公式可得答案.【题目详解】该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,体积之和为,设制成的大铁球半径为,则,得,故大铁球的表面积为.故答案为:.14、10【解题分析】由数量积的定义直接计算.【题目详解】.故答案为:10.15、【解题分析】结合扇形的面积公式即可求出圆心角的大小.【题目详解】解:设圆心角为,半径为,则,由题意知,,解得,故答案为:16、6π+40【解题分析】根据角度制与弧度制的互化,可得圆心角,再由扇形的弧长公式,可得弧长,即可求解扇形的周长,得到答案.【题目详解】由题意,根据角度制与弧度制的互化,可得圆心角,∴由扇形的弧长公式,可得弧长,∴扇形的周长为.【题目点拨】本题主要考查了扇形的弧长公式的应用,其中解答中熟记扇形的弧长公式,合理准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、选择见解析;(1);(2)单调递减区间为.【解题分析】选条件①:由函数的图象相邻两条对称轴之间的距离为,得到,解得,再由平移变换和图象关于原点对称,解得,得到,(1)将代入求解;(2)令,结合求解.选条件②:利用平面向量的数量积运算得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.选条件③:利用两角和的正弦公式,二倍角公式和辅助角法化简得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.【题目详解】选条件①:由题意可知,最小正周期,∴,∴,∴,又函数图象关于原点对称,∴,∵,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件②:∵,∴,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件③:,,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得.∴函数在上的单调递减区间为.【题目点拨】方法点睛:1.讨论三角函数性质,应先把函数式化成y=Asin(ωx+φ)(ω>0)的形式
函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为,y=tan(ωx+φ)的最小正周期为.
对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t=ωx+φ,将其转化为研究y=sint的性质18、(1),单调增区间为,(2)最大值为,最小值为【解题分析】(1)化简得到,代入计算得到函数值,解不等式得到单调区间.(2)计算,根据三角函数图像得到最值.【小问1详解】,故,,解得,,故单调增区间为,【小问2详解】当时,,在的最大值为1,最小值为,故在区间上的最大值为,最小值为.19、(1);(2).【解题分析】(1)由,得,即,故由几何概型概率公式,可得从区间内任意选取一个实数,求事件“”发生的概率;(2)由,得,整数有个,在区间的整数有个,由古典概型概率公式可知得,从区间内任意选取一个整数事件“”发生的概率.试题解析:(1)因为,所以,即,故由几何概型可知,所求概率为.(2)因为,所以,则在区间内满足的整数为1,2,3,共3个,故由古典概型可知,所求概率为.20、(1)或(2)【解题分析】(1)化简集合B,根据补集、并集的运算求解;(2)由条件转化为A⊆B,分类讨论,建立不等式或不等式组求解即可.【小问1详解】当时,,,或,或【小问2详解】由A∩B=A,得A⊆B,当A=∅时,则3a>a+2,解得a>1,当A≠∅时,则,解得,综上,实数a的取值范围是21、(1)为“局部中心函数”,理由详见解题过程;(2)【解题分析】(1)判断是否为“局部中心函数”,即判断方程是否有解,若有解,则说明是“局部中心函数”,否则说明不是“局部中心函数”;(2)条件是定义域为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度货运司机劳动合同模板(含绩效考核)
- 二零二五年度学校教师学生国际交流与合作聘用合同3篇
- 二零二五年度信息技术产品软件售后服务合同书模板2篇
- 2025年度个人法律咨询委托书范本4篇
- 二零二五年度厨房电气设备安装与维护承包协议4篇
- 2025版实习合同模板:实习期间解约与补偿3篇
- 二零二五版旧机动车交易车辆售后配件供应合同3篇
- 2025版实习期员工劳动合同-实习期间合同解除与续签3篇
- 珠海科技学院《贾平凹文学创作研究》2023-2024学年第一学期期末试卷
- 二零二五年度商业写字楼租赁合同样本
- 反骚扰政策程序
- 运动技能学习与控制课件第十一章运动技能的练习
- 射频在疼痛治疗中的应用
- 四年级数学竖式计算100道文档
- “新零售”模式下生鲜电商的营销策略研究-以盒马鲜生为例
- 项痹病辨证施护
- 职业安全健康工作总结(2篇)
- 怀化市数字经济产业发展概况及未来投资可行性研究报告
- 07FD02 防空地下室电气设备安装
- 教师高中化学大单元教学培训心得体会
- 弹簧分离问题经典题目
评论
0/150
提交评论