山东省威海市示范名校2024届数学高一上期末教学质量检测试题含解析_第1页
山东省威海市示范名校2024届数学高一上期末教学质量检测试题含解析_第2页
山东省威海市示范名校2024届数学高一上期末教学质量检测试题含解析_第3页
山东省威海市示范名校2024届数学高一上期末教学质量检测试题含解析_第4页
山东省威海市示范名校2024届数学高一上期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省威海市示范名校2024届数学高一上期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,则下列结论正确的是()A.// B.C. D.2.已知条件,条件,则p是q的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.函数的部分图象如图所示,则函数的解析式为()A. B.C. D.4.已知扇形OAB的周长为12,圆心角大小为,则该扇形的面积是()cm.A.2 B.3C.6 D.95.如果角的终边经过点,则()A. B.C. D.6.函数的图象如图所示,则()A. B.C. D.7.已知=(4,5),=(-3,4),则-4的坐标是()A(16,11) B.(-16,-11)C.(-16,11) D.(16,-11)8.如图,四面体中,,且,分别是的中点,则与所成的角为A. B.C. D.9.函数的一个零点落在下列哪个区间()A.(0,1) B.(1,2)C.(2,3) D.(3,4)10.已知两点,点在直线上,则的最小值为()A. B.9C. D.10二、填空题:本大题共6小题,每小题5分,共30分。11.计算的结果是_____________12.函数的定义域为____13.函数,的图象恒过定点P,则P点的坐标是_____.14.函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则的值是________15.当,,满足时,有恒成立,则实数的取值范围为____________16.已知等差数列的前项和为,,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个顶点分别为,,.(1)求AB边上的高所在直线的方程;(2)求面积.18.如图,弹簧挂着的小球做上下振动,它在(单位:)时相对于平衡位置(静止时的位置)的高度(单位:)由关系式确定,其中,,.在一次振动中,小球从最高点运动至最低点所用时间为.且最高点与最低点间的距离为(1)求小球相对平衡位置的高度(单位:)和时间(单位:)之间的函数关系;(2)小球在内经过最高点的次数恰为50次,求的取值范围19.已知全集U=R,集合,,求:(1)A∩B;(2).20.已知圆的圆心在直线上,半径为,且圆经过点和点①求圆的方程②过点的直线截图所得弦长为,求直线的方程21.已知非空数集,设为集合中所有元素之和,集合是由集合的所有子集组成的集合(1)若集合,写出和集合;(2)若集合中的元素都是正整数,且对任意的正整数、、、、,都存在集合,使得,则称集合具有性质①若集合,判断集合是否具有性质,并说明理由;②若集合具有性质,且,求的最小值及此时中元素的最大值的所有可能取值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】采用排除法,根据向量平行,垂直以及模的坐标运算,可得结果【题目详解】因为,所以A不成立;由题意得:,所以,所以B成立;由题意得:,所以,所以C不成立;因为,,所以,所以D不成立.故选:B.【题目点拨】本题主要考查向量的坐标运算,属基础题.2、B【解题分析】利用充分条件和必要条件的定义进行判断【题目详解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分条件.故选:B3、B【解题分析】由图像求出周期再根据可得,再由,代入可求,进而可求出解析式.【题目详解】由图象可知,,得,又∵,∴.当时,,即,解得.又,则,∴函数的解析式为.故选:B.【题目点拨】本题主要考查了由三角函数的图像求函数解析式,需熟记正弦型三角函数的周期公式,属于基础题.4、D【解题分析】设扇形的半径和弧长,根据周长和圆心角解方程得到,再利用扇形面积公式计算即得结果.【题目详解】设扇形OAB的半径r,弧长l,则周长,圆心角为,解得,故扇形面积为.故选:D5、D【解题分析】由三角函数的定义可求得的值.【题目详解】由三角函数的定义可得.故选:D.【题目点拨】本题考查利用三角函数的定义求值,考查计算能力,属于基础题.6、C【解题分析】根据正弦型函数图象与性质,即可求解.【题目详解】由图可知:,所以,故,又,可求得,,由可得故选:C.7、D【解题分析】直接利用向量的坐标运算求解.【题目详解】-4.故选:D8、B【解题分析】设为中点,由中位线可知,所以就是所求两条之间所成的角,且三角形为等腰直角三角形你给,所以.考点:空间两条直线所成的角.【思路点晴】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决9、B【解题分析】求出、,由及零点存在定理即可判断.【题目详解】,,,则函数的一个零点落在区间上.故选:B【题目点拨】本题考查零点存在定理,属于基础题.10、C【解题分析】根据给定条件求出B关于直线的对称点坐标,再利用两点间距离公式计算作答.【题目详解】依题意,若关于直线的对称点,∴,解得,∴,连接交直线于点,连接,如图,在直线上任取点C,连接,显然,直线垂直平分线段,则有,当且仅当点与重合时取等号,∴,故的最小值为.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】根据对数的运算公式,即可求解.【题目详解】根据对数的运算公式,可得.故答案为:.12、【解题分析】本题首先可以通过分式的分母不能为以及根式的被开方数大于等于来列出不等式组,然后通过计算得出结果【题目详解】由题意可知,解得或者,故定义域为【题目点拨】本题考查函数的定义域的相关性质,主要考查函数定义域的判断,考查计算能力,考查方程思想,是简单题13、【解题分析】令,解得,且恒成立,所以函数的图象恒过定点;故填.14、【解题分析】,把代入,得,,,故答案为考点:1、已知三角函数的图象求解析式;2、三角函数的周期性【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时15、【解题分析】根据基本不等式求得的最小值,由此建立不等式,求解即可.【题目详解】解:,,则,∴,当且仅当,即:时取等号,∴,∴,∴实数的取值范围为故答案为:.16、161【解题分析】由等差数列的性质可得,即可求出,又,带入数据,即可求解【题目详解】由等差数列的性质可得=,所以,又由等差数列前n项和公式得【题目点拨】本题考查等差数列的性质及前n项和公式,属基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据高线的性质,结合互相垂直直线的斜率关系,结合直线点斜式方程进行求解即可;(2)根据点到直线距离公式、两点间距离公式、三角形面积公式进行求解即可.【小问1详解】∵,,∴AB的斜率,∴AB边高线斜率,又,∴AB边上的高线方程为,化简得.【小问2详解】直线AB的方程为,即,顶点C到直线AB的距离为,又,∴的面积.18、(1),;(2)【解题分析】(1)首先根据题意得到,,从而得到,(2)根据题意,当时,小球第一次到达最高点,从而得到,再根据周期为,即可得到.【题目详解】(1)因为小球振动过程中最高点与最低点的距离为,所以因为在一次振动中,小球从最高点运动至最低点所用时间为,所以周期为2,即,所以所以,(2)由题意,当时,小球第一次到达最高点,以后每隔一个周期都出现一次最高点,因为小球在内经过最高点的次数恰为50次,所以因为,所以,所以的取值范围为(注:的取值范围不考虑开闭)19、(1);(2)(-∞,3)∪[4,+∞)【解题分析】(1)化简集合B,直接求交集即可;(2)求出集合B的补集,进而求并集即可.【题目详解】(1)由已知得:B=(-∞,3),A=[1,4),∴A∩B=[1,3)(2)由已知得:=(-∞,1)∪[4,+∞),∴()∪B=(-∞,3)∪[4,+∞)【题目点拨】本题考查集合的基本运算,借助数轴是求解交、并、补集的好方法,常考题型20、①.②.或【解题分析】①.由题意设出圆心坐标,结合圆经过的点得到方程组,求解方程组计算可得圆的方程为②.分类讨论直线的斜率存在和斜率不存在两种情况可得直线的方程为或试题解析:①由题意可知,设圆心为则圆为:,∵圆过点和点,∴,则即圆的方程为②设直线的方程为即,∵过点的直线截图所得弦长为,∴,则当直线的斜率不存在时,直线为,此时弦长为符合题意,即直线的方程为或21、(1),;(2)①有,理由见解析;②的最小值为,所有可能取值是、、、、.【解题分析】(1)根据题中定义可写出与;(2)(i)求得,取、、、、,找出对应的集合,使得,即可得出结论;(ii)设,不妨设,根据题中定义分析出、,,,,,然后验证当、、、、时,集合符合题意,即可得解.【小问1详解】解:由题中定义可得,.【小问2详解】解:(ⅰ)集合具有性质,理由如下:因为,所以当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;综上可得,集合具有性质;(ⅱ)设集合,不妨设因为为正整数,所以,因为存在使得,所以此时中不能包含元素、、、且,所以.所以因为存在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论