安徽省宿州市宿城第一中学2024届高一上数学期末教学质量检测试题含解析_第1页
安徽省宿州市宿城第一中学2024届高一上数学期末教学质量检测试题含解析_第2页
安徽省宿州市宿城第一中学2024届高一上数学期末教学质量检测试题含解析_第3页
安徽省宿州市宿城第一中学2024届高一上数学期末教学质量检测试题含解析_第4页
安徽省宿州市宿城第一中学2024届高一上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宿州市宿城第一中学2024届高一上数学期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,则下列结论正确的是()A. B.C. D.a,b大小不确定2.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,AB⊥BC且AB=BC=1,SA=,则球O的表面积是()A. B.C. D.3.下列选项正确的是()A. B.C. D.4.下列四个函数,最小正周期是的是()A. B.C. D.5.函数在区间上的最小值为()A. B.C. D.6.如图,摩天轮上一点在时刻距离地面的高度满足,,,,已知某摩天轮的半径为50米,点距地面的高度为60米,摩天轮做匀速运动,每10分钟转一圈,点的起始位置在摩天轮的最低点,则(米)关于(分钟)的解析式为()A.() B.()C.() D.()7.已知x,y满足,求的最小值为()A.2 B.C.8 D.8.设,,则的值为()A. B.C.1 D.e9.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:第一档水量为240立方米/户年及以下部分;第二档水量为240立方米/户年以上至360立方米/户年部分(含360立方米/户年);第三档水量为360立方米/户年以上部分.家庭常住人口在4人(不含4人)以上的多人口户,凭户口簿,其水量按每增加一人各档水量递增50立方米/年确定.第一档用水价格为2.1元/立方米;第二档用水价格为3.2元/立方米;第三档用水价格为6.3元/立方米.小明家中共有6口人,去年整年用水花费了1602元,则小明家去年整年的用水量为().A.474立方米 B.482立方米C.520立方米 D.540立方米10.已知函数,则函数()A.有最小值 B.有最大值C有最大值 D.没有最值二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为_____________.12.若“”是“”的必要不充分条件,则实数的取值范围为___________.13.若,,则=______;_______14.如图,在直四棱柱中,当底面ABCD满足条件___________时,有.(只需填写一种正确条件即可)15.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积是___________.16.已知函数.(1)若在上单调递减,则实数的取值范围是___________;(2)若的值域是,则实数的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知函数(其中,,)的图象与x轴的交于A,B两点,A,B两点的最小距离为,且该函数的图象上的一个最高点的坐标为.求函数的解析式(2)已知角的终边在直线上,求下列函数的值:18.已知函数,其定义域为D(1)求D;(2)设,若关于的方程在内有唯一零点,求的取值范围19.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(,是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口是的中点,分别落在线段上.已知米,米,记.(1)试将污水净化管道总长度(即的周长)表示为的函数,并求出定义域;(2)问当取何值时,污水净化效果最好?并求出此时管道的总长度.(提示:.)20.已知是方程的两根,且,求的值21.已知函数是定义在R上的奇函数,且当时,,现已画出函数f(x)在y轴左侧的图象,如图所示(1)请补出函数,剩余部分的图象,并根据图象写出函数,的单调增区间;(2)求函数,的解析式;(3)已知关于x的方程有三个不相等的实数根,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据作差比较法可得解.【题目详解】解:因为,所以故选:B.2、A【解题分析】如图,三棱锥S-ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC,SA=,AB⊥BC且AB=BC=1,∴AC=∴SA⊥AC,SB⊥BC,SC=∴球O的半径R==1∴球O的表面积S=4πR2=4π故选A点睛:本题考查球的表面积的求法,合理地作出图形,确定球心,求出球半径是解题的关键3、A【解题分析】根据指数函数的性质一一判断可得;【题目详解】解:对于A:在定义域上单调递减,所以,故A正确;对于B:在定义域上单调递增,所以,故B错误;对于C:因为,,所以,故C错误;对于D:因为,,即,所以,故D错误;故选:A4、C【解题分析】依次计算周期即可.【题目详解】A选项:,错误;B选项:,错误;C选项:,正确;D选项:,错误.故选:C.5、C【解题分析】求出函数的对称轴,判断函数在区间上的单调性,根据单调性即可求解.【题目详解】,对称轴,开口向上,所以函数在上单调递减,在单调递增,所以.故选:C6、B【解题分析】根据给定信息,依次计算,再代入即可作答.【题目详解】因函数最大值为110,最小值为10,因此有,解得,而函数的周期为10,即,则,又当时,,则,而,解得,所以.故选:B7、C【解题分析】利用两点间的距离公式结合点到直线的距离公式即可求解.【题目详解】解:表示点与直线上的点的距离的平方所以的最小值为点到直线的距离的平方所以最小值为:故选:C.8、A【解题分析】根据所给分段函数解析式计算可得;【题目详解】解:因为,,所以,所以故选:A9、D【解题分析】根据题意,建立水费与用水量的函数关系式,即可求解.【题目详解】设小明家去年整年用水量为x,水费为y.若时,则;若时,则;若时,则.令,解得:故选:D10、B【解题分析】换元法后用基本不等式进行求解.【题目详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据偶次根式和分式有意义的要求可得不等式组,解不等式组可求得结果.【题目详解】由题意得:,解得:且,即的定义域为.故答案为:.12、##【解题分析】由题意,根据必要不充分条件可得⫋,从而建立不等关系即可求解.【题目详解】解:不等式的解集为,不等式的解集为,因为“”是“”的必要不充分条件,所以⫋,所以,解得,所以实数的取值范围为,故答案为:.13、①.②.【解题分析】首先指对互化,求,再求;第二问利用指数运算,对数,化简求值.【题目详解】,,所以;,,所以故答案为:;14、(答案不唯一)【解题分析】直四棱柱,是在上底面的投影,当时,可得,当然底面ABCD满足的条件也就能写出来了.【题目详解】根据直四棱柱可得:∥,且,所以四边形是矩形,所以∥,同理可证:∥,当时,可得:,且底面,而底面,所以,而,从而平面,因为平面,所以,所以当满足题意.故答案为:.15、【解题分析】计算出一个弓形的面积,由题意可知,勒洛三角形由三个全等的弓形以及一个正三角形构成,利用弓形和正三角形的面积可求得结果.【题目详解】由弧长公式可得,可得,所以,由和线段所围成的弓形的面积为,而勒洛三角形由三个全等的弓形以及一个正三角形构成,因此,该勒洛三角形的面积为.故答案为:.16、①.②.【解题分析】(1)分析可知内层函数在上为减函数,且对任意的,恒成立,由此可得出关于实数的不等式组,由此可解得实数的取值范围;(2)分析可知为二次函数值域的子集,分、两种情况讨论,可得出关于实数的不等式组,综合可得出实数的取值范围.【题目详解】(1)令,.当时,,该函数为常值函数,不合乎题意.所以,,内层函数的对称轴为直线,由于函数在上单调递减,且外层函数为增函数,故内层函数在上为减函数,且对任意的,恒成立,所以,,解得;(2)因为函数的值域是,则为二次函数值域的子集.当时,内层函数为,不合乎题意;当时,则有,解得.综上所述,实数的取值范围是.故答案为:(1);(2).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当为第一象限角时:;当为第三象限角时:.【解题分析】(1)由题意得,,进而求得,根据最高点结合可得,进而可求得的解析式;(2)由题意得为第一或第三象限角,分两种情况由同角三角函数关系可解得结果.【题目详解】(1)由题意得,,则,解得.根据最高点得,所以,即,因,所以,取得.所以.(2)由题意得,则为第一或第三象限角.当为第一象限角时:由得,代入得,又,所以,则.所以;当为第三象限角时:同理可得.18、(1)(2)【解题分析】(1)由可求出结果;(2)由求出或,根据方程在内有唯一零点,得到,解得结果即可.【小问1详解】由得,得,得,所以函数的定义域为,即.【小问2详解】因为,所以,所以或,因为关于的方程在内有唯一零点,且,所以,解得.19、(1),定义域为.(2)当或时所铺设的管道最短,为米.【解题分析】(1)如图,因为都是直角三角形,故可以得到,也就是,其中.(2)可变形为,令后,则有,其中,故取的最大值米.【题目详解】(1).由于,,所以,故.管道的总长度,定义域为.(2).设,则,由于,所以.因为在内单调递减,于是当时,取的最大值米.(此时或).答:当或时所铺设的管道最短,为米.【题目点拨】在三角变换中,注意之间有关系,如,,三者中知道其中一个,必定可以求出另外两个.20、【解题分析】先计算出的值并分析的范围,再计算出的值,结合的范围求解出的值.【题目详解】因为,,所以,所以,因为,又因为,所以.21、(1)图象见解析,函数的单调增区间为;(2);(3).【解题分析】(1)根据奇函数的图象特征即可画出右半部分的图象,结合图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论