辽宁省凌源市第二中学2023年高二数学第二学期期末综合测试模拟试题含解析_第1页
辽宁省凌源市第二中学2023年高二数学第二学期期末综合测试模拟试题含解析_第2页
辽宁省凌源市第二中学2023年高二数学第二学期期末综合测试模拟试题含解析_第3页
辽宁省凌源市第二中学2023年高二数学第二学期期末综合测试模拟试题含解析_第4页
辽宁省凌源市第二中学2023年高二数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设随机变量的分布列为,则()A.3 B.4 C.5 D.62.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为10,14,则输出的()A.6 B.4 C.2 D.03.已知函数且,则实数的取值范围是()A. B. C. D.4.已知复数z=1-i,则z2A.2 B.-2 C.2i D.-2i5.三位男同学和两位女同学随机排成一列,则女同学甲站在女同学乙的前面的概率是()A. B. C. D.6.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油7.下面几种推理过程是演绎推理的是()A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B.由三角形的性质,推测空间四面体的性质C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D.在数列中,,可得,由此归纳出的通项公式8.阅读程序框图,运行相应的程序,则输出的的值为()A.72 B.90 C.101 D.1109.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是A.72 B.120 C.144 D.16810.某地区一次联考的数学成绩近似地服从正态分布,已知,现随机从这次考试的成绩中抽取100个样本,则成绩低于48分的样本个数大约为()A.6 B.4 C.94 D.9611.已知是抛物线上一点,则到抛物线焦点的距离是()A.2 B.3 C.4 D.612.甲、乙两支球队进行比赛,预定先胜3局者获得比赛的胜利,比赛随即结束.结束除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.则甲队以3:2获得比赛胜利的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为椭圆上任意一点,点,分别在直线与上,且,,若为定值,则椭圆的离心率为______.14.的二项展开式中含的项的系数是________.15.求经过点,且在轴上的截距是在轴上的截距2倍的直线方程为________.16.要用三根数据线将四台电脑A,B,C,D连接起来以实现资源共享,则不同的连接方案种数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在的展开式中,求:(1)第3项的二项式系数及系数;(2)含的项.18.(12分)在直角坐标系中,曲线的方程为.已知,两点的坐标分别为,.(1)求曲线的参数方程;(2)若点在曲线位于第一象限的图象上运动,求四边形的面积的最大值.19.(12分)在直角坐标系中,直线的参数方程为(为参数).在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆的方程为.(1)求圆的直角坐标方程和的普通方程;(2)设圆与直线交于点,若点的坐标为,求.20.(12分)已知函数.(1)当时,解不等式;(2)若存在实数解,求实数a取值范围.21.(12分)已知数列中,,.(1)求数列的通项公式;(2)若,求数列的前n项和.22.(10分)已知函数,其中为实常数.(1)若当时,在区间上的最大值为,求的值;(2)对任意不同两点,,设直线的斜率为,若恒成立,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:根据方差的定义计算即可.详解:随机变量的分布列为,则则、故选D点睛:本题考查随机变量的数学期望和方差的求法,是中档题,解题时要认真审题,注意方差计算公式的合理运用.2、C【解析】

由程序框图,先判断,后执行,直到求出符合题意的.【详解】由题意,可知,,满足,不满足,则,满足,满足,则,满足,满足,则,满足,不满足,则,不满足,输出.故选C.【点睛】本题考查了算法和程序框图,考查了学生对循环结构的理解和运用,属于基础题.3、A【解析】分析:先确定函数奇偶性与单调性,再利用奇偶性与单调性解不等式.详解:因为,所以,为偶函数,因为当时,单调递增,所以等价于,即,或,选A.点睛:解函数不等式:首先根据函数的性质把不等式转化为同一单调区间上的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.4、A【解析】解:因为z=1-i,所以z25、A【解析】

三男两女的全排列中女同学甲要么站在女同学乙的前面要么站在女同学的后面.【详解】三男两女的全排列中女同学甲要么站在女同学乙的前面要么站在女同学的后面.即概率都为【点睛】本题考查排位概率,属于基础题.6、D【解析】

解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故C错误;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故D正确故选D.考点:1、数学建模能力;2、阅读能力及化归思想.7、C【解析】

推理分为合情推理(特殊→特殊或特殊→一般)与演绎推理(一般→特殊),其中合情推理包含类比推理与归纳推理,利用各概念进行判断可得正确答案.【详解】解:∵A中是从特殊→一般的推理,均属于归纳推理,是合情推理;B中,由平面三角形的性质,推测空间四面体的性质,是由特殊→特殊的推理,为类比推理,属于合情推理;C为三段论,是从一般→特殊的推理,是演绎推理;D为不完全归纳推理,属于合情推理.故选:C.【点睛】本题考查推理中的合情推理与演绎推理,注意理解其概念作出正确判断.8、B【解析】输入参数第一次循环,,满足,继续循环第二次循环,,满足,继续循环第三次循环,,满足,继续循环第四次循环,,满足,继续循环第五次循环,,满足,继续循环第六次循环,,满足,继续循环第七次循环,,满足,继续循环第八次循环,,满足,继续循环第九次循环,,不满足,跳出循环,输出故选B点睛:此类问题的一般解法是严格按照程序框图设计的计算步骤逐步计算,逐次判断是否满足判断框内的条件,决定循环是否结束.要注意初始值的变化,分清计数变量与累加(乘)变量,掌握循环体等关键环节.9、B【解析】分两类,一类是歌舞类用两个隔开共种,第二类是歌舞类用三个隔开共种,所以N=+=120.种.选B.10、B【解析】

由已知根据正态分布的特点,可得,根据对称性,则,乘以样本个数得答案.【详解】由题意,知,可得,又由对称轴为,所以,所以成绩小于分的样本个数为个.故选:B.【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,以及考查正态分布中两个量和的应用,其中熟记正态分布的对称性是解答的关键,属于基础题.11、B【解析】分析:直接利用抛物线的定义可得:点到抛物线焦点的距离.详解:由抛物线方程可得抛物线中,则利用抛物线的定义可得点到抛物线焦点的距离.故选B.点睛:本题考查了抛物线的定义标准方程及其性质,考查了推理能力与计算能力,属于基础题.12、B【解析】若是3:2获胜,那么第五局甲胜,前四局2:2,所以概率为,故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设,求出M,N的坐标,得出关于的式子,根据P在椭圆上得到的关系,进而求出离心率.【详解】设,则直线PM的方程为,直线PN的方程为,联立方程组,解得,联立方程组,解得,则又点P在椭圆上,则有,因为为定值,则,,.【点睛】本题考查椭圆离心率的求法,有一定的难度.14、60【解析】

,令即可.【详解】二项式展开式的通项为,令,得,故的项的系数是60.故答案为:60【点睛】本题考查求二项展开式中的特定项的系数问题,考查学生的基本计算能力,是一道基础题.15、【解析】

根据截距是否为零分类求解.【详解】当在轴上的截距为零时,所求直线方程可设为,因为过点,所以;当在轴上的截距不为零时,所求直线方程可设为,因为过点,所以;所以直线方程为【点睛】本题考查根据截距求直线方程,考查基本分析求解能力,属中档题.16、【解析】

由题目可以联想到正方形的四个顶点,放上四台电脑,正方形的四条边和它的两条对角线,六条线中选3条,满足题意的种数为:全部方法减去不合题意的方法来解答.【详解】解:画一个正方形和它的两条对角线,在这6条线段中,选3条的选法有种.当中,4个直角三角形不是连接方案,故不同的连接方案共有种.故答案为:.【点睛】连线、搭桥、几何体棱上爬行路程、正方体顶点构成四面体等,是同一性质问题,一般要用排除法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)第3项的系数为24=240.(2)含x2的项为第2项,且T2=-192x2.【解析】试题分析:(1)根据二项展开式的通项,即可求解第项的二项式系数及系数;(2)由二项展开式的痛项,可得当时,即可得到含的系数.试题解析:(1)第3项的二项式系数为C=15,又T3=C(2)42=24·Cx,所以第3项的系数为24C=240.(2)Tk+1=C(2)6-kk=(-1)k26-kCx3-k,令3-k=2,得k=1.所以含x2的项为第2项,且T2=-192x2.18、(1)(为参数);(2)【解析】

(1)根据椭圆的参数方程表示出曲线的参数方程;(2)根据曲线的参数方程设曲线上的点,结合点在第一象限得出,将四边形的面积转化为和的面积之和,并利用角的三角函数式表示,利用辅助角公式化简,再利用三角函数基本性质求出最大值。【详解】(1)曲线的方程为,可化参数方程为(为参数).(2)设曲线上的点,因为在第一象限,所以.连接,则=.当时,四边形面积的最大值为.【点睛】本题考查椭圆的参数方程,考查参数方程的应用,一般而言,由圆或椭圆上的动点引起的最值或取值范围问题,可以将动点坐标利用圆或椭圆的参数方程设为参数方程的形式,并借助三角恒等变换公式以及三角函数的基本性质求解。19、(1);;(2)【解析】

(1)的普通方程消参,圆的直角坐标方程利用公式化简。(2)联立方程利用韦达定理解出,,再带入即可。【详解】(1)(2)将代入得,点都在点下方。【点睛】极坐标与直角坐标方程互化公式涉及弦长一般利用参数t的几何意义解题,属于基础题20、(1)(2)【解析】分析:(1)对x分类讨论,转化为三个不等式组,最后取交集即可;(2)存在实数解等价于.详解:(1)当时,当时,当时综上:不等式解集为(2)存在x使得成立,点睛:1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.2.f(x)<a恒成立⇔f(x)max<a.f(x)>a恒成立⇔f(x)min>a.21、(1)(2)【解析】

(1)根据已知变形为为常数,利用等比数列求的通项公式;(2)利用累加法求数列的通项公式,然后代入求数列的通项公式,最后求和.【详解】解:(1)依题意,,故,故是以3为首项,3为公比的等比数列,故(2)依题意,,累加可得,,故,(时也适合);,故,当n为偶数时,;当n为奇数时,为偶数,;综上所述,【点睛】本题考查了等比数列的证明以及累加法求通项公式,最后得到,当通项公式里出现时,需分是奇数和偶数讨论求和.22、(1)(2)【解析】

(1)讨论与0,1,e的大小关系确定最值得a的方程即可求解;(2)原不等式化为,不妨设,整理得,设,当时,,得,分离,求其最值即可求解a的范围

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论