版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省日照市第三实验中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如果函数没有零点,则的取值范围为(
)A.
B.
C.
D.
参考答案:C2.
若的内角所对的边满足,且,则的最小值为(
)
A.
B.
C.
D.参考答案:B略3.下列命题中,是正确的全称命题的是(
)(A)对任意的,都有.(B)菱形的两条对角线相等.(C)存在实数使得.Ks5u(D)对数函数在定义域上是单调函数.参考答案:D4.抛物线x2=4y的焦点坐标为()A.(1,0) B.(﹣1,0) C.(0,1) D.(0,﹣1)参考答案:C【考点】抛物线的简单性质.【分析】先根据标准方程求出p值,判断抛物线x2=4y的开口方向及焦点所在的坐标轴,从而写出焦点坐标.【解答】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选C.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题.5.x=0是x(2x﹣1)=0的()条件.A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要参考答案:A【考点】必要条件、充分条件与充要条件的判断.【专题】计算题;方程思想;定义法;简易逻辑.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:由x(2x﹣1)=0得x=0或x=,则x=0是x(2x﹣1)=0的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.6.已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A. B. C. D.参考答案:A【考点】平面向量数量积的含义与物理意义.【专题】平面向量及应用.【分析】先求出向量、,根据投影定义即可求得答案.【解答】解:,,则向量方向上的投影为:?cos<>=?===,故选A.【点评】本题考查平面向量数量积的含义与物理意义,考查向量投影定义,属基础题,正确理解相关概念是解决问题的关键.7.已知双曲线-=1和椭圆+=1(a>0,m>b>0)的离心率互为倒数,那么以a、b、m为边长的三角形是(
)A.锐角三角形 B.直角三角形C.钝角三角形 D.锐角或钝角三角形参考答案:B略8.在等差数列{an}中an>0,且a1+a2+…+a10=30,则a5·a6的最大值等于(
)A.3
B.6
C.9
D.36参考答案:C9.对于函数,部分与的对应关系如下表:123456789745813526数列满足,且对任意,点都在函数的图象上,则的值为(
)A12
B14
C16
D18参考答案:C10.已知椭圆,,F1,F2分别为椭圆的左右焦点,若椭圆C上存在点使得,则椭圆的离心率的取值范围为(
)A. B. C. D.参考答案:D【分析】由已知可得:当点在椭圆的上(下)顶点处时,最大,要满足椭圆上存在点使得,则,可得,整理得:,结合可得,问题得解。【详解】依据题意作出如下图象:由已知可得:当点在椭圆的上(下)顶点处时,最大,要满足椭圆上存在点使得,则所以即:,整理得:又,即:所以所以椭圆离心率的取值范围为故选:D【点睛】本题主要考查了转化能力及椭圆的简单性质,还考查了计算能力,属于难题。二、填空题:本大题共7小题,每小题4分,共28分11.数列{an}满足,则{an}的前60项和为________.参考答案:1830略12.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,则它们中的任意一艘都不需要等待码头空出的概率
.参考答案:【考点】几何概型.【分析】建立甲先到,乙先到满足的条件,画出0≤x≤24且0≤y≤24可行域面积,求出满足条件的可行域面积,由概率公式求解即可.【解答】解:甲船停泊的时间是1h,乙船停泊的时间是2h,设甲到达的时刻为x,乙到达的时刻为y,则(x,y)全部情况所对应的平面区域为;若不需等待则x,y满足的关系为,如图所示;它们中的任意一艘都不需要等待码头空出的概率为P==.故答案为:.13.命题“若a>b,则a2>b2”的逆命题是
.参考答案:“若a2>b2,则a>b”【考点】四种命题.【分析】根据已知中的原命题,结合逆命题的定义,可得答案.【解答】解:命题“若a>b,则a2>b2”的逆命题是“若a2>b2,则a>b”,故答案为:“若a2>b2,则a>b”14.一条光线从A(5,3)发出,经x轴反射,通过点B(-1,4),则反射光线所在直线方程为
.参考答案:7x+6y-17=015.定义:若数列对任意的正整数n,都有(d为常数),则称为“绝对和数列”,d叫做“绝对公和”,已知“绝对和数列”,“绝对公和”,则其前2010项和的最小值为
参考答案:-200616.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为. 参考答案:【考点】条件概率与独立事件. 【专题】计算题;整体思想;定义法;概率与统计. 【分析】方法一:第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球,由此可求概率, 方法二:事件“第一次摸到红球且第二次也摸到红球”的概率等于事件“第一次摸到红球”的概率乘以事件“在第一次摸出红球的条件下,第二次也摸到红球”的概率.根据这个原理,可以分别求出“第一次摸到红球”的概率和“第一次摸到红球且第二次也摸到红球”的概率,再用公式可以求出要求的概率 【解答】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球 故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=, 方法二:先求出“第一次摸到红球”的概率为:P1=, 设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2 再求“第一次摸到红球且第二次也摸到红球”的概率为P==, 根据条件概率公式,得:P2==, 故答案为: 【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键. 17.在区间中随机地取出两个数,则两数之和小于的概率是______________参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系xOy中,曲线C1的参数方程为(为参数,),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求C2的直角坐标方程;(2)当C1与C2有两个公共点时,求实数t的取值范围.参考答案:(1);(2).【分析】(1)在极坐标方程中,把展开凑出,即可化得直角坐标方程.(2)把的参数方程化成普通方程,可得是半圆,是直线,由有两个公共点可求出的取值范围.【详解】(1)对于曲线的极坐标方程,可得,即,曲线的直角坐标方程为.(2)曲线的参数方程为(为参数,),化为普通方程得,为下半圆.如图,当直线与曲线相切时,由,解得或(舍去).当直线过点时,.综上所述,实数的取值范围为.【点睛】本题考查极坐标与参数方程的综合问题,考查极坐标与直角坐标方程、参数方程与普通方程的互化,直线与圆的位置关系.在极坐标方程中凑出,即可化得直角坐标方程.19.在平面直角坐标系xOy中,原点为O,抛物线C的方程为x2=4y,线段AB是抛物线C的一条动弦.(1)求抛物线C的准线方程和焦点坐标F;(2)若,求证:直线AB恒过定点.参考答案:【考点】直线与抛物线的位置关系.【分析】(1)利用抛物线C的方程为x2=4y,真假写出准线方程,焦点坐标.(2)设直线AB方程为y=kx+b,A(x1,y1),B(x2,y2),联立直线与抛物线方程,利用韦达定理以及,求出b,得到直线方程,然后求出定点坐标.【解答】解:(1)抛物线C的方程为x2=4y,可得准线方程:y=﹣1焦点坐标:F(0,1)(2)证明:设直线AB方程为y=kx+b,A(x1,y1),B(x2,y2)联立得x2﹣4kx﹣4b=0,∴,,∴x1x2=﹣8,∴﹣4b=﹣8,b=2,直线y=kx+2过定点(0,2).20.已知函数,f(x)=,数列{an}满足a1=1,an+1=f(an)(n∈N*)(I)求证数列{}是等差数列,并求数列{an}的通项公式;(II)记Sn=a1a2+a2a3+..anan+1,求Sn.参考答案:【考点】数列与函数的综合;数列的求和.【专题】综合题.【分析】(I)直接利用an+1=f(an)得到.再对其取倒数整理即可证数列{}是等差数列;进而求出数列{an}的通项公式;(II)利用(I)的结论以及所问问题的形式,直接利用裂项相消求和法即可求Sn.【解答】解:(I)由条件得,.∴?=3.∴数列{}是首项为=1,公差d=3的等差数列.∴=1+(n﹣1)×3=3n﹣2.故an=.(II)∵anan+1=().∴Sn═a1a2+a2a3+..anan+1=[(1﹣)+()+…+()]=(1﹣)=.【点评】本题第二问主要考查了数列求和的裂项相消法.裂项相消法一般适用于一数列的通项是一分式形式且分子为常数,而分母是某一等差数列相邻两项的乘积组成.21.不等式证明(本小题满分10分)
设a、b、c均为实数,求证:++≥++.
参考答案:2.证明:
∵a、b、c均为实数.∴(+)≥≥,当a=b时等号成立;………………4分(+)≥≥,当b=c时等号成立;(+)≥≥.………………6分三个不等式相加即得++≥++,………………9分当且仅当a=b=c时等号成立.………………10分
22.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查统计,其中学习积极性高的25人中有18人能积极参加班级工作,学习积极性一般的25人中有19人不太主动参加班级工作.(1)根据以上数据建立一个2×2列联表;(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?说明理由.参考答案:解:(1)统计数据如下表所示:
积极参加班级工作不太主动参加班级工作合计学习积极性高18725学习积极性一般61925合计242650
(
2)由统计量的计算公式=≈11.5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 微笑服务的心得体会5篇
- 电力竞赛心得体会
- 2022科学新课标的心得体会(8篇)
- 青海省海北藏族自治州(2024年-2025年小学五年级语文)统编版开学考试(下学期)试卷及答案
- 高考文综区域地理教案 东亚精讲精练 内含考向指导 内容精析 典例剖析 高考链接
- 上海市市辖区(2024年-2025年小学五年级语文)人教版期中考试(下学期)试卷及答案
- 四年级数学(小数加减运算)计算题专项练习与答案汇编
- 高中化学《弱电解质的电离》说课稿
- s版二年级语文下册全册教案
- 湘教版小学美术三年级上册全册教案
- 农田水利与灌溉系统建设项目风险评估报告
- 奖牌投标方案
- 铝型材挤压车间操作流程及作业指导书
- 初中英语词性讲解课件
- 陕西中考物理备考策略课件
- 美国博物馆教育研究
- 9F燃机燃机规程
- 部编版五年级上册《我的长生果》公开课一等奖优秀课件
- 人民调解培训课件(共32张PPT)
- 小学部编版五年级语文上册教案(全)
- aiissti变频器说明书
评论
0/150
提交评论