版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,满足,在上的投影(正射影的数量)为-2,则的最小值为()A. B.10 C. D.82.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法,求某多项式值的一个实例,若输入的值分别为4和2,则输出的值为()A.32 B.64 C.65 D.1303.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为A.5 B.10 C.4 D.204.在中,内角,,所对的边分别为,,.若的面积为,则角=()A. B.C. D.5.已知等比数列的前n项和为,若,,,则()A. B. C. D.6.P是直线x+y+2=0上任意一点,点Q在圆x-22+yA.2 B.4-2 C.4+27.一组数据0,1,2,3,4的方差是A. B. C.2 D.48.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000m/h,飞行员先看到山顶的俯角为,经过1min后又看到山顶的俯角为,则山顶的海拔高度为(精确到0.1km,参考数据:)A.11.4km B.6.6km C.6.5km D.5.6km9.已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.10.已知直线的倾斜角为,在轴上的截距为2,则此直线方程为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设实数满足,则的最小值为_____12.底面边长为,高为的直三棱柱形容器内放置一气球,使气球充气且尽可能的膨胀(保持球的形状),则气球表面积的最大值为_______.13.数列满足,设为数列的前项和,则__________.14.在△中,三个内角、、的对边分别为、、,若,,,则________15.已知无穷等比数列的所有项的和为,则首项的取值范围为_____________.16.如图,圆锥形容器的高为圆锥内水面的高为,且,若将圆锥形容器倒置,水面高为,则等于__________.(用含有的代数式表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,以轴为始边,作两个角,它们终边分别经过点和,其中,,且.(1)求的值;(2)求的值.18.已知,,,,求的值.19.某家具厂有方木料90,五合板600,准备加工成书桌和书橱出售.已知生产第张书桌需要方木料O.l,五合板2,生产每个书橱而要方木料0.2,五合板1,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)怎样安排生产可使所得利润最大?20.已知函数,若,且,,求满足条件的,.21.数列的前项和.(1)求的通项公式;(2)设,求数列的前项和,并求使成立的实数最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
在上的投影(正射影的数量)为可知,可求出,求的最小值即可得出结果.【详解】因为在上的投影(正射影的数量)为,所以,即,而,所以,因为所以,即,故选D.【点睛】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题.2、C【解析】程序运行循环时变量值为:;;;,退出循环,输出,故选C.3、B【解析】
直接利用分层抽样按照比例抽取得到答案.【详解】设应抽取的女生人数为,则,解得.故答案选B【点睛】本题考查了分层抽样,属于简单题.4、C【解析】
由三角形面积公式,结合所给条件式及余弦定理,即可求得角A.【详解】中,内角,,所对的边分别为,,则由余弦定理可知而由题意可知,代入可得所以化简可得因为所以故选:C【点睛】本题考查了三角形面积公式的应用,余弦定理边角转化的应用,属于基础题.5、D【解析】
根据等比数列前n项和的性质可知、、成等比数列,即可得关于的等式,化简即可得解.【详解】等比数列的前n项和为,若,,根据等比数列前n项和性质可知,、、满足:化简可得故选:D【点睛】本题考查了等比数列前n项和的性质及简单应用,属于基础题.6、D【解析】
首先求出圆心到直线的距离与半径比较大小,得到直线与圆是相离的,根据圆上的点到直线的距离的最小值等于圆心到直线的距离减半径,求得结果.【详解】因为圆心(2,0)到直线x+y+2=0的距离为d=2+0+2所以直线x+y+2=0与圆(x-2)2所以PQ的最小值等于圆心到直线的距离减去半径,即PQmin故选D.【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,点到直线的距离公式,圆上的点到直线的距离的最小值问题,属于简单题目.7、C【解析】
先求得平均数,再根据方差公式计算。【详解】数据的平均数为:方差是=2,选C。【点睛】方差公式,代入计算即可。8、C【解析】
根据题意求得和的长,然后利用正弦定理求得BC,最后利用求得问题答案.【详解】在中,根据正弦定理,所以:山顶的海拔高度为18-11.5=6.5km.故选:C【点睛】本题考查了正弦定理在实际问题中的应用,考查了学生数学应用,转化与划归,数学运算的能力,属于中档题.9、B【解析】
利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【详解】,因为为锐角三角形,所以,,,故,选B.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.10、D【解析】
由题意可得直线的斜率和截距,由斜截式可得答案.【详解】解:∵直线的倾斜角为45°,∴直线的斜率为k=tan45°=1,由斜截式可得方程为:y=x+2,故选:D.【点睛】本题考查直线的斜截式方程,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1.【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由实数满足作出可行域如图,
由图形可知:.
令,化为,
由图可知,当直线过点时,直线在轴上的截距最小,有最小值为1.
故答案为:1.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.12、【解析】由题意,气球充气且尽可能地膨胀时,气球的半径为底面三角形内切圆的半径
∵底面三角形的边长分别为,∴底面三角形的边长为直角三角形,利用等面积可求得∴气球表面积为4π.13、【解析】
先利用裂项求和法将数列的通项化简,并求出,由此可得出的值.【详解】,.,因此,,故答案为:.【点睛】本题考查裂项法求和,要理解裂项求和法对数列通项结构的要求,并熟悉裂项法求和的基本步骤,考查计算能力,属于中等题.14、【解析】
利用正弦定理求解角,再利用面积公式求解即可.【详解】由,因为,故,.故.故答案为:【点睛】本题主要考查了解三角形的运用,根据题中所给的边角关系选择正弦定理与面积公式等.属于基础题型.15、【解析】
设等比数列的公比为,根据题意得出或,根据无穷等比数列的和得出与所满足的关系式,由此可求出实数的取值范围.【详解】设等比数列的公比为,根据题意得出或,由于无穷等比数列的所有项的和为,则,.当时,则,此时,;当时,则,此时,.因此,首项的取值范围是.故答案为:.【点睛】本题考查利用无穷等比数列的和求首项的取值范围,解题的关键就是结合题意得出首项和公比的关系式,利用不等式的性质或函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.16、【解析】
根据水的体积不变,列出方程,解出的值,即可得到答案.【详解】设圆锥形容器的底面面积为,则未倒置前液面的面积为,所以水的体积为,设倒置后液面面积为,则,所以,所以水的体积为,所以,解得.【点睛】本题主要考查了圆锥的结构特征,以及圆锥的体积的计算与应用,其中解答中熟练应用圆锥的结构特征,利用体积公式准确运算是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据正弦的定义求得,再运用余弦的二倍角公式求解,(2)由(1)问可得、两点的坐标,从而再运用正切的和角公式求解.【详解】(1)由得:所以:(2)由则故因此.【点睛】本题考查三角函数的定义和余弦的二倍角公式和正切的和角公式,属于基础题.18、【解析】
根据角的范围结合条件可求出,的值,然后求出的值,再由二倍角公式可求解.【详解】由,,得.又,则.由,,得.所以又所以【点睛】本题考查两角和与差的三角函数公式和同角三角函数关系以及二倍角公式,考察角变换的应用,属于中档题.19、(1)只安排生产书桌,最多可生产300张书桌,获得利润24000元;(2)生产书桌100张、书橱400个,可使所得利润最大【解析】
(1)设只生产书桌x个,可获得利润z元,则,由此可得最大值;(2)设生产书桌x张,书橱y个,利润总额为z元.则,,由线性规划知识可求得的最大值.即作可行域,作直线,平移此直线得最优解.【详解】由题意可画表格如下:方木料()五合板()利润(元)书桌(个)0.1280书橱(个)0.21120(1)设只生产书桌x个,可获得利润z元,则,∴∴所以当时,(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24000元(2)设生产书桌x张,书橱y个,利润总额为z元.则,∴在直角坐标平面内作出上面不等式组所表示的平面区域,即可行域作直线,即直线.把直线l向右上方平移至的位置时,直线经过可行域上的点M,此时取得最大值由解得点M的坐标为.∴当,时,(元).因此,生产书桌100张、书橱400个,可使所得利润最大所以当,时,.因此,生产书桌100张、书橱400个,可使所得利润最大.【点睛】本题考查简单的线性规划的实际应用,解题时需根据已知条件设出变量,列出二元一次不等式组表示的约束条件,列出目标函数,然后由解决线性规划的方法求最优解.20、,【解析】
利用三角恒等变换,化简的解析式,从而得出结论.【详解】解:,∴,待定系数,可得,又,∴,∴,.【点睛】本题主要考查三角恒等变换,属于基础题.21、(1);(2),.【解析】
(1)由已知可先求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国染料助剂行业深度调查及发展潜力研究报告版
- 2024-2030年中国板式家具市场运行动态及投资发展前景预测报告
- 2024-2030年中国机械千斤顶项目可行性研究报告
- 2024-2030年中国木醋液市场供需状况及竞争格局分析报告
- 2024-2030年中国有机澳洲坚果市场营销态势与投资盈利预测报告
- 2024-2030年中国智能家庭摄像机器人行业市场发展趋势与前景展望战略分析报告
- 2024-2030年中国智慧教室行业应用模式前景与投资规划分析报告
- 2024-2030年中国春雷霉素行业深度调查及投资前景预测报告
- 2024-2030年中国文化地产行业商业模式分析投资规划研究报告
- 2025年乡镇卫生院2025年度工作计划
- 《导演基础知识》课程标准
- 青岛幼儿师范高等专科学校工作人员招聘考试真题2022
- 直播电商知到章节答案智慧树2023年潍坊工程职业学院
- 信号与系统(湖南工学院)知到章节答案智慧树2023年
- 西方经济学(上下册)PPT全套教学课件
- 做好宗教工作关键在“导”,如何去“导”
- 2023年甘肃省普通高中学业水平合格性考试物理试题(七)
- 履带钻机安全操作规程
- 2022环保检测作业指导书(HJ1237-2021机动车排放定期检验规范)
- 护士首次注册体检表
- 2023年四川监理员考试题库附答案
评论
0/150
提交评论