版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1.1正弦定理第一章解三角形优秀学案:王鑫,戴太文,邓雅冉,胡文杰,黄义宝,李慧君,贾明义,孙冬雪,赵修伟,吴世华,魏雨晴,鞠欣雨,庞博元,席道强优秀学案展示:教学目标:1.掌握正弦定理及正弦定理的变形。2.了解正弦定理的几何意义及推到方法。3.能初步运用正弦定理理解一些三角形。教学重点.难点1.正弦定理的推到。2.正弦定理的应用。复习三角形中的边角关系1、角的关系2、边的关系3、边角关系大角对大边(一)任意三角形中的边角关系(二)直角三角形中的边角关系(角C为直角)1、角的关系2、边的关系3、边角关系?直角三角形中:ABCabc课题引入探索:直角三角形的边角关系式对任意三角形是否成立?1sin,sin,sin===CcbBcaACccBbcAacsin,sin,sin===即CcBbAasinsinsin==\ABCC1abcO如图:外接圆法:RCc2sin1=RAaRBb2sin2sin==,同理:()为外接圆半径即得:RRCcBbAa2sinsinsin===RCcCc2sinsin1==所以在一个三角形中,各边和它所对角的正弦的比相等,即正弦定理变式:一般的,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。概念:解三角形思考:利用正弦定理可以解决一些怎样的解三角形问题呢?1)已知两角和任一边,求其它两边和一角.2)已知两边与其中一边的对角,求其它边和角.
例题:在△ABC中,已知A=75°,B=45°,c=
求a
,
b.
有正弦定理得:正弦定理的简单应用已知两角和任一边,求其它两边和一角.在△ABC中,已知A=30°,B=120°,b=12
求a
,
c.a=,c=正弦定理的简单应用已知两角和任一边,求其它两边和一角.四.正弦定理的简单应用已知两边与其中一边的对角,求其它边和角.例1
已知a=16,b=,A=30°
.求角B,C和边c已知两边和其中一边的对角,求其他边和角解:由正弦定理得所以B=60°,或B=120°当时B=60°C=90°C=30°当B=120°时B16300ABC16316例2:a=20,b=10,A=45°求角B,C和边c解:由正弦定理得所以B=300,或B=1800-300=1500由于1500+450>1800故B只有一解C=1150,四.正弦定理的简单应用已知两边与其中一边的对角,求其它边和角.例题3:三角形ABC中,已知a=8cm,b=cm,A=1200,解三角形。四.正弦定理的简单应用已知两边与其中一边的对角,求其它边和角.无解课堂练习解三角形(结果用根式表示)课堂小结1.正弦定理已知两角及一边解三角形一定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版小区商业街物业社区文化活动赞助与支持服务合同2篇
- 2025年陶瓷行业标准制定与实施合同3篇
- 2025年私家车租赁车辆检测与评估服务合同3篇
- 2025年劳务派遣合同审查协议
- 2025年云服务监控协议
- 2025版个人房屋产权转移合同模板4篇
- 二零二五年度绿色建筑改造项目合同书4篇
- 2025年垃圾处理和解协议
- 2025年混合赠与合同与赠与税
- 2025版协议离婚法律援助与调解服务协议3篇
- 第1课 隋朝统一与灭亡 课件(26张)2024-2025学年部编版七年级历史下册
- 2025-2030年中国糖醇市场运行状况及投资前景趋势分析报告
- 冬日暖阳健康守护
- 水处理药剂采购项目技术方案(技术方案)
- 2024级高一上期期中测试数学试题含答案
- 山东省2024-2025学年高三上学期新高考联合质量测评10月联考英语试题
- 不间断电源UPS知识培训
- 三年级除法竖式300道题及答案
- 2024年江苏省徐州市中考一模数学试题(含答案)
- GB/T 1196-2023重熔用铝锭
- 幼儿园教师培训:计数(数数)的核心经验
评论
0/150
提交评论