




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
助记词随机碰撞机器人扫地机器人迭代与进化:产品从随机碰撞到自主导航,感知模块的进步是关键:感知模块通过对周围环境的感知扫描,实现地图建模、定位和导航,依赖于各种传感器、陀螺仪等。扫地机器人从原始的随机碰撞产品迭代升级为当前的自主导航类产品,产品升级的背后,感知模块的进步是重要推手,让扫地机器人真正进入了智能化时代。当前的定位与地图构建的主流是SLAM技术。按传感器种类来划分,SLAM技术主要分为两类:一、 基于LDS激光测距传感器的SLAM技术;二、 是基于机器视觉的SLAM。LDS运用三角测距原理,能够获得精度较高的距离信息,在测量与人距离这一功能上尚无完美替代。目前阻碍LDS大规模推广的主要还是价格因素,通常线束越高,价格越高。随着终端用户的产品放量,激光雷达的产业化将会带动价格打破瓶颈区域。VSLAM是一种机器视觉导航定位系统,其技术难点在于两方面:特征点提取与匹配;匹配点图像坐标与空间坐标是非线性关系。VSLAM精度相对较低,但其优势在于纹理信息的丰富性,相同外形的障碍物VSLAM可以识别出内容上的不同,这带来了场景分类上的优势,适用于动态复杂的环境。从随机碰撞到自主导航,划重点-感知模块一、扫地机器人智能化升级,导航技术是核心扫地机器人智能化升级,感知模块重要性突出。扫地机器人最早在欧美市场销售,近年来随着深度学习、机器视觉等AI技术的发展,扫地机器人产品的迭代不断加快,向智能化方向升级。目前,市场主流机型可分为随机式清扫(第一代)、规划式清扫(第二代)和导航建图式清扫(第三代),后两代都具备路径规划技术,这使得环境感知模块的重要性愈发突出。智能扫地机器人以自动清扫的方式解放年轻人打扫压力,同时其智能化特性引发年轻人的“猎奇”心理,使得市场规模高速增长。随机式扫地机器人清扫效果靠时间和不断的重复来堆砌,经常会出现反复清扫或大面积漏扫的情况,算法的优劣直接决定了清扫质量和效率高低(实际上,随机式产品也包含了简单算法,例如撞墙时的转向角度等)。路径规划式扫地机器人增加了定位导航,清扫过程有迹可循,清扫面积和效率相比随机式要高很多,但规划式产品必须要有定位的能力,需要进行地图构建和规划清扫。当前的定位与地图构建的主流技术主要是SLAM。SLAM(SimultaneousLocalizationAndMapping)的含义是艮口时定位与地图构建,指的是机器人在自身位置不确定的条件下,在完全未知环境中创建地图,同时利用地图进行自主定位和导航。SLAM问题可以描述为:机器人在未知环境中从一个未知位置开始移动,在移动过程中根据位置估计和传感器数据进行自身定位,同时建造增量式地图。自主定位导航需要三大技术:(1) 实时定位(Localization)。目前GPS的精度只能达到半米,而且实时定位的更新频率很快,需要达到10次/秒,GPS定位技术无法满足。定位包括相对定位和绝对定位:相对定位主要依靠内部本体感受传感器如里程计、陀螺仪等,通过给定初始位姿,来测量相对于机器人初始位姿的距离和方向来确定当前机器人的位姿,也叫做航迹推测(DeadReckoning,DR);绝对定位主要采用主动或被动标识、地图匹配、GPS、或导航信标进行定位。位置的计算方法包括有三角测量法、三边测量法和模型匹配算法等。(2) 绘制地图(Mapping)。导航领域是有专人绘制的,然而家居的实时变化决定了扫地机器人需要在没有人工干预的情况下自主画图。(3) 路径规划。机器人绘制的地图可以向任意方向行驶,因此其路径规划还包括避障和直接控制行为,导航仪是由人来决定,机器人是用算法决定的,因此算法是路径规划的。由于传感器种类和安装方式的不同,SLAM的实现方式和难度会有一定的差异。按传感器来分,SLAM技术主要分为两类:一类是基于LDS激光测距传感器的SLAM技术;另一类是基于机器视觉的SLAM。其中,激光SLAM比VSLAM起步早,框架已经初步确定,因此产品落地相对成熟,主要分为单线式和多线式。基于视觉的SLAM又称为VSLAM(VisualSLAM),目前的主流算法是基于RGBD的深度摄像机,分为单目、多目、结构光(进一步分为单目结构光和多目结构光)、ToF等。随着机器视觉的迅速发展,VSLAM技术因为信息量大、适用范围广等优点受到关注,目前尚处于应用场景拓展、产品逐渐落地阶段。二、LDS方案:技术成熟,降低成本是关键激光雷达SLAM是LDS激光测距传感器与SLAM技术的结合。激光雷达测距LDS的原理是:从半导体激光器以一定的入射角度发射一束或n束激光照射被测物体,激光在物体表面发生散射或折射,通过透镜对反射激光汇聚成像,光斑成像在CCD传感器上(Charge-coupledDevice,感光耦合组件)。当物体发生位移时,光斑也将随之产生移动,其位移大小通过信号处理器的计算而获得,由光斑位移距离计算出被测物体与基线的距离值。由于入射光和反射光构成一个三角形,位移计算运用了几何三角定理,故又被称为激光三角测距法。这种方法能够获得精度较高的距离信息。LDS的硬件工作流程分为几步:发射激光,同时感光芯片曝光;读取像素数据;计算出像素的质心位置;将步骤3中的计算结果(像素位置)换算成距离信息。阻碍LDS大规模推广的主要还是价格因素。目前,LDS技术比较成熟的是美国Velodyne公司,随着技术的发展与革新,LDS成本持续降低,为其应用领域扩展提供有力支持。影响LDS价格的主要有两大要素:线束数量和采购量。通常线束越高,价格越高;采购量越大,价格越低。Quanergy公司通过降低线束维度,逐步使用固态激光雷达,让成本降低到了250美元左右,国内企业思岚科技,可以在采购量超过1万台左右时,单线束的价格可以降低到1000元以内。随着终端用户的产品放量,激光雷达的产业化将会带动价格打破瓶颈区域。激光雷达按照激光束的数量可以分为1线(2D)、4线、8线、16线、32线、64线激光雷达,不同线型、厂商的激光雷达售价差别也相对较大。根据精度和功能需求的不同,智能装备所用的型号不同,具备高度自主移动功能的移动式机器人(如无人驾驶汽车、无人机),需要配备长距离8线以上的激光雷达,成本较高。相比之下,对空间测距范围需求有限的扫地机器人大多采用1线短距离LDS,相对较低的成本也有利于LDS在该领域的推广。目前来看,新一代扫地机器人已经开始利用LDS技术替换传统随机碰撞式产品,例如小米和Neato的扫地机器人主要走LDS方向,而科沃斯产品则覆盖了LDS与VSLAM技术。以小米为例,2016年公布的米家扫地机器人,搭载了小米自主研发的LDS传感器,可以实现360°扫描,测距达到了1800次/秒。该产品会根据LDS获取的精确距离信息,通过SLAM算法实时绘制房间地图,提高清扫效率和质量。三、VSLAM:发展迅速,稳健性是难点VSLAM(VisualSLAM)是一种机器视觉导航定位系统,相比能够直接获取方向和距离数据的激光SLAM技术,VSLAM获取的是灰度或彩色图案,对于障碍点只能获取方向而无法直接测量距离。要想计算该点的距离,需要相机挪动一个位置再观察一次,按照三角原理进行推算。VSLAM过程可以分为前端和后端,前端相当于VO(视觉里程计),研究帧与帧之间变换关系,提取每帧图像特征点,进行相邻帧图像的特征点匹配;后端主要是利用TORO、G2O算法的全局优化。因此,VSLAM的技术难点在于两方面:1.特征点提取与匹配;2.匹配点图像坐标与空间坐标是非线性关系。例如2D-2D像素点的对应满足对极几何、2D-3D点的对应满足PnP约束,这些匹配会引入众多约束关系,使得待估计变量的关系错综复杂。这两个难点,前者导致了前端的特征跟踪不易,后者导致了后端的优化不易。因此VSLAM的稳健性是一个有挑战的问题。为此需要引入回环检测,就是如何有效判断相机经过同一场景的能力。如果回环成功,通过把对比信息输送给后端优化,提供更加有效的姿态约束,从而显著减小累积误差,逼近全局一致。对于VSLAM而言,视觉传感器的重要性不言而喻。视觉传感器主要分为单目、双目、单目结构光、双目结构光、ToF几大类。传统面阵相机/多目被动式相机采用面阵CMOS作为核心元件,随着手机行业对于镜头的强劲需求,使得整个CMOS、镜头制造行业迅猛发展,带动其成本的降低,这也是VSLAM发展起来的重要原因。按照传感器的不同,实现vLSAM有两条路径:一是基于单目、鱼眼相机,利用多帧图像来估计自身的位姿变化;二是基于深度相机的方案,与LDS类似,通过收集到的点云数据,直接计算障碍物距离。自微软的Kinect系列推出以来,基于深度相机的RGB-DSLAM已经成为了VSLAM的主流方案。RGB-D是一种新型的视觉传感器,其核心是获取周围环境的RGB图像和Depthmap(深度信息)。相比传统单目和双目相机,RGB-D更易于获得障碍物的三维信息,深度信息通过红外结构光或飞行时间原理测得。结构光(StructuredLight)原理:通俗来说就是光源具备特殊结构,例如离散光斑、条纹光等。通过将图像投影至被测物上,根据图像的畸变程度来判断被测物体的深度信息。以LightCoding方案为例,其光源成为“激光散斑”,激光束通过光学衍生元件DOE(DiffractiveOpticalElements,如扩散片和光斑)进行衍射,得到散斑图。散斑具备高度随机性,空间中任意两个散斑图案均不同,因此可以给整个空间做出标记。在形成基准坐标后,IR传感器可以捕捉经过物体畸变后的散斑,通过进一步计算可以得到在基准坐标中的偏移量,从而求解出深度信息。ToF(TimeofFlight)飞行时间测距法:根据调制方法的不同,一般可以分为脉冲调制和连续波调制两种。ToF是一种很有前景的深度信息获取方法,通过传感器发出调制波,碰到物体后反射,计算发射与反射的时间差或相位差,以产生深度信息。目前搭载消费级ToF的产品主要有微软的Kinect2、MESA的SR4000.GoogleProjectTango中使用的PMDTech等,在手势识别、环境建模等方面取得了较多的应用。双目、ToF和结构光,这三种方法在检测距离、检测速度上相差不大,主要区别在于:结构光方案优势在于技术成熟,深度图像分辨率可以做得比较高。由于结构光会主动投射编码光,因此适合用于光照不足、缺乏纹理的场景。其缺点在于室外环境基本不能使用,因为容易受到强自然光影响,导致投射的编码光被淹没。ToF方案抗干扰性能好,与基于特征匹配原理的深度相机不同,其测量精度不会随着测量距离的增大而降低,测量误差基本上是固定的,因此在远距离场景具有明显优势,视角更宽°ToF的主要不足在于深度图像分辨率较低,近距离测量精度相比其他深度相机有较大差距。同时,ToF传感器芯片成本很高,阻碍了其量产。双目方法的成本相对是最低的,但是最大的问题在于深度信息依赖软件算法,导致需要较高计算性能的芯片。另外,双目法也有普通RGB的通病:依赖于光照强度和物理纹理,在物理特征不明显的区域性能出现下降。四、对比:LDS测距精准,VSLAM应用场景巨大我们将两者的特征进行了对比。从建模精度来说,激光测距精度非常高,可以达到0.01-0.1米,适用于静态且简单的场景;而VSLAM的精度相对较低,但地图的信息量更完整。从应用场景来看,LDS由于强光直射的影响,其设备档次被明确划分为室内应用和室外应用;VSLAM的优势在于纹理信息的丰富性,相同外形的障碍物VSLAM可以识别出内容上的不同,这带来了场景分类上的优势。然而在光照较弱或纹理不清晰的环境,VSLAM的表现相对较差。从成本上来说,LDS有很多价格档次,例如Velodyne的室外远距离多线雷达价格在几万至几十万不等,室内的中低端近距离平面激光雷达价格也在千元级,但目前国内也有低成本LDS的解决方案;VSLAM主要通过摄像头采集数据信息,成本上要更低。在计算需求和算法难度方面,LDS由于其研究成熟以及误差模型相对简单,在算法上门槛更低,甚至部分开算代码已经纳入了ROS系统成为标配。而VSLAM由于特征点提取与匹配、坐标转换等图像处理问题,其算法门槛要远高于LDS,因此VSLAM基本需要强劲的准桌面级CPU或者GPU支持,而LDS可以在普通ARMCPU上实时运行。整体来看,LDS与VSLAM各有优劣,并不存在明显的替代关系,未来在应用场景上可能各有区分。清洁效率、便利性是衡量扫地机器人性能的重要指标,因此能够自主导航避障、高效清洁,是扫地机器人发展的必然趋势。目前几乎所有扫地机器人厂商都在开发自主导航式的扫地机器人,所采用的自主避障和规划路线就集中于VSLAM和LDS技术。激光雷达扫地机器人采用一线低成本LDS技术获得周围物体的距离信息,优势在于厘米级的精度和较大的覆盖范围(半径为5米的激光雷达能够覆盖80平方米的空间);缺点在于无法探测到落地玻璃、花瓶等高反射率物体(激光照射这类物体无法接收散射光)。基于VSLAM的扫地机器人,优势在于应用场景较宽,对室内居室没有要求,缺点在于精度较低,会出现累积误差。其中,由于扫地机器人面向消费市场,相同品牌下的LDS与VSLAM导航的扫地机器人与随机碰撞式扫地机器人相比,价格一般贵出80%-150%,其普及过程与成本降低的进程高度相关,从清洁效率或清洁质量上都比随机碰撞式扫地机器人高出很多.国内扫地机器人企业竞争格局及技术路线。根据中怡康时代的数据,科沃斯在国内市场凭借先发优势形成第一梯队,目前其占率大约在50%左右。科沃斯产品系列较为齐全,涵盖了低端的随机碰撞式以及中高端导航机器人,技术路线也覆盖了LDS以及VSLAM。第二梯队主要是国际巨头iRobot和新贵品牌小米,二者合计占国内市场份额约23%-25%。根据年报的披露,iRobot在全球市占率高达60%,在美国拥有80%的市场份额。其技术路线一直采用VSLAM,主要定位于高端市场,产品价格也相对较高。小米的扫地机器人产品主要采用LDS技术,旗下的石头科技已经推出3个系列、4款单品。三大系列分别是:(1)高端的“石头”品牌,定位扫拖一体智能导航扫地机器人,首发价2499元;(2)中端的“米家”品牌,背靠小米面向中端客户,首发价1699元;(3)面向年轻消费群体的“小瓦”品牌,设计语言与另外两个品牌保持一致,核心功能针对中小户型特点进行定制,两款价格分别为1099和1799元。目前在LDS算法里面,技术领先的企业已经能够做到分区扫、设置虚拟墙、断点续扫等。第三梯队主要是一些国内外的领先品牌。其中,国外品牌技术优势明显,然而渠道较弱以及售后能力不足,以浦桑尼克、福玛特、飞利浦和三星为主;国内企业主要是传统家电厂商海尔、美的等,这类企业拥有渠道优势,后续发展空间不容忽视;剩余还有一些中小品牌,众多没有核心技术和产业链整合能力的公司将会被行业整合。多传感融合是感知模块的未来方向激光SLAM和VSLAM都具备独特的优势,单独使用均存在局限性。现实中的SLAM系统往往会配备惯性原件、视觉里程计、GPS等辅助定位系统,使得SLAM系统与其他传感器的融合成为了一大热点。比如在单独使用VSLAM双目视觉的情况下,后期感知系统会出现累积误差;而在视觉引导激光修正的情况下,这种误差会显著减少。VSLAM在纹理信息丰富的动态环境中也能保持稳定性能,并能为激光SLAM提供准确的点云匹配;而激光雷达则能提供精确的方向和距离信息,尤其是在光照不足或纹理缺失的环境中,激光雷达表现出更加优越的性能。二者的配合使用,具有取长补短的潜力,能提升导航的精度和稳定性。以小米发布的米家扫地机器人为例,该产品搭载了12类传感器和3颗处理器,可以实时处理传
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大班社会领域礼仪
- 彩色小屋美术课件
- 流程管理理念丶方法与工具
- 化学-云南省2025届高三下学期3月百万大联考试题和答案
- 少儿美术海绵宝宝
- 公司家文化课件
- 员工培训自我评估
- 职业技术学院口腔医学技术专业人才培养方案
- 2024-2025学年统编版道德与法治九年级上册第二单元 民主与法治 检测卷(含答案)
- 九年级思想品德知识树
- 2024年北京电子科技职业学院高职单招语文历年参考题库含答案解析
- 《智能轮椅的整体结构设计案例综述》1400字
- 临床医学个人能力提升
- 2025年焦虑症健康教育课件:创新与实践相结合
- 北师大版八年级下学期期末数学练习题及答案
- 定额〔2025〕2号文-关于发布2020版电网技术改造及检修工程概预算定额2024年下半年价格
- 《脑出血的外科治疗》课件
- 《普通高中体育与健康》(水平五)体能模块教学计划
- 职业生涯规划-体验式学习知到智慧树章节测试答案2024年秋华侨大学
- 主要施工机械设备、劳动力、设备材料投入计划及其保证措施
- 基本公共卫生服务项目培训
评论
0/150
提交评论