版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ENABLINGTHENEXTGENERATIION
OFCLOUD&AIIUSING800GB/S
OPTIICALMODULES
PROMOTERS:
Contents
1.CloudExpansionSetsPaceforOpticalModules01
2.DataCenterArchitectures03
3.8x100GSolutionforSRScenario05
3.1800GSRscenariorequirementanalysis05
3.2TechnicalFeasibilityof8x100Gsolutions05
44x200GSolutionforFRScenario
07
4.1800GFRscenariorequirementanalysis
07
4.2Technicalfeasibilityof4x200Gsolutions
08
4.3Packagingfor4x200Gsolution
09
4.4Forwarderrorcorrection(FEC)codefor200Gperlane
10
5.Possiblesolutionsfor800GDRscenario
11
6.SummaryandOutlook
12
01
www.800G
Sales($M)
2020
20212022
100G200G400G
2023
LIGHTCOUNTING
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
1.CloudExpansionSetsPacefor
OpticalModules
Cloudcomputingandstoragehavetakenoverasthetechnologicalbackbonetoamajorityofourmodernbusinessapplicationsprovidinginfrastructure,platform,softwareorvirtuallyanythingasaservice,andtopersonalappliancescoveringphones,laptopsandvarioussmartdevices.UnlikewirelessinfrastructureandstandardslikeLTEand5G,wherethestandardizationandtechnologyareaheadoftheactualapplications,providinga“builditandtheywillcome”businessmodel,therapidandall-encompassingexpansionofcloudapplicationsandservicesvigorouslypushesthedevelopmentofhigh-techelectronicsandoptics,whichoftenseemtorunbehindthepacesetbytheendusers.Theexponentialresourcegrowthofartificialintelligenceapplicationsandtheinherentneedforhighbandwidthforthetransportofbigdataputsafurtherstrainondatacenterarchitecturesandtheunderlyinginterconnects.Thus,thedeploymentsoftheAIcloud,aregainingmomentum.
Cloudapplications,AR/VR,AI,and5Gapplicationgeneratemoreandmoretraffic.Theexplosivegrowthoftrafficrequireshigherbandwidth.AsshowninFigure1,globalinterconnectionbandwidthcapacitywillgrowata48%CAGRin2017-2021.
WORLDWIDEGROWTH
10,000(Tbps)
CAGR:+48%
6,000
4,000
2,000
0
2020
US.EUAPLATAM
8,000
2018
2019
2017
2021
Figure1–GlobalInterconnectionIndex(Source:Equinix)
AsshowninFigure2,marketanalystsareprojectingafirstadoptionof400GDatacommodulesin2020withalargeradoptionof2x400G/800Gmodulesin2022-23.
$7,000$6,000$5,000$4,000$3,000$2,000$1,000$-
2024
2x400G
Figure2–Projectionofthemarketrevenuefordatacommodules(Source:LightCounting)
Ethernetswitchingchipcapacity
EnablingTheNextGenerationOfCloud&AiUsing800Gb/sOpticalModules
“OurLightCountingForecastmodelindicatesthatoperatorsofClouddatacenterswillneedtodeploy800Gopticsby2023-2024 tokeepupwiththegrowthofdatatraffic,”statedfounderandCEOofLightCountingMarketResearch,VladimirKozlov,PhD.“Mostof800Gwillbestillpluggabletransceivers,butweexpecttoseesomeimplementationofco-packagedopticsaswell.”
DatacentercloudarchitecturesarebeingpacedbythecapacityscalingofswitchingASICs,whichisdoublingapproximatelyeverytwoyears,unfazedbythetalkabouttheendofMoore’sLaw.Today,12.8Tb/sEthernetswitchingchipsarebeingcommerciallydeployedwithfirstchipdesignfirmsalreadyprototyping25.6Tb/ssiliconfordeploymentnextyear,asshowninFigure3.Thisputsfurtherpressureontothedensificationofopticalinterconnects,whichdonotscaleatthespeedofCMOSduetothelackofacommondesignmethodologyacrossthevariouscomponentsandacommonlargescaleprocess.
Inthepastfewyears,therapidexpansionofcloudserviceswasfueledbytherapidadoptionandpriceerosionof100Gshort
reachopticalmodulesbasedondirectdetectiontechnologyandnon-returntozero
(NRZ)modules.Afterthebeginningofthe400GbEBandwidthAssessmentactivity
inIEEEinMarch2011,initialdeploymentof400Gopticalmodulesisfinally
startingin2020withastrongerrampprojectedfor2021,asshowninFigure2.
Infact,intheinitialusecases,400Gmoduleswillbemainlyusedtotransport
4x100Gover500minDR4applicationand2x200GFR4opticsover2km,not
makinguseofthe400GbEMAC.Atthesametime,itseemsunlikelythat
IEEEwouldsoonstandardizethenextgenerationofoptics,suchas800GbE,
meaningthatthestandardizationofhigherdensityopticsforthetransportof
8x100GbEor2x400GbEforthe25.6Tb/sand51.2Tb/sswitchinggenerations
wouldbewellbehindactualmarkettimelinerequirementsof2021-22.This
raisestheneedfor800Gindustryinteroperabilityoutsideoftheestablished
standardbodies.
800G
QSFP112-DD&OSFP32x@1U/64x@2U
25.6T/51.2T
256/512Lanes
100GQSFP28
32x@1U
10GSerdes
25GSerdes
50GSedes
128Lanes
100GSerdes
128Lanes
20132015201720192021-22
400G
QSFP56-DD&OSFP
32x@1U
100GQSFP2864x@2U
40GQSFP+32x@1U
256Lanes
256Lanes
1.28T
12.8T
6.4T
3.2T
Figure3–Historicalevolutionofdatacenterswitchingchipcapacity
02
www.800G
03
www.800G
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
2.DataCenterArchitectures
Thehyperscaledatacentermarketisquitefragmentedwithrespecttotheuseddatacenterarchitecturesorthedemandforpluggableoptics.DatacentersforoperatorswithalargerexternalcustomerbaseofferingXaaSaremorelikelydominatedbynorth-southclient-to-servertrafficandcouldhavemoresmallergeographicalclusters.Ontheotherhand,operatorswithalargeinternaldemandforcloudcomputingandstorageseemoreeast-westtrafficbetweenserversandcouldoperatetheirdatacentersashugeclusterswithahigherradix.Evenincaseofsimilarusecases,theoperatorscandeployindividualflavorsofnetworkarchitectureorhaveasubjectivepreferencetoacertaininterconnectssolutionsuchasPSM4orCWDM4orothercost-downvariantsofthereof,suchas100GCWDM4-OCP.
Onecanderiveatleasttwomaintypesoftypicaldatacentersarchitectures.Figure4showsthecommonabstractionofahyper-scaledatacenteranditsopticalinterconnectroadmap.Ingeneral,thesearchitecturesarelarger,haveacertainconvergencefromlayertolayer,e.g.3:1,andrelyoncoherentZRinterconnectsattheSpinelayer.Animportantboundaryconstraintfor800Gnetworkinginthiscaseisthat200Ginterconnects,albeitnotserial,areusedattheservertoTORlayer,whereastheTOR-leaf/spinelayerwouldtypicallyrelyonPSM44x200Ginafan-outconfiguration.
DC
Scenario4
.....
Spine
Scenario3
.....
Leaf
Scenario2
TOR
.....
Scenario1
Server
Scenario4
(DCI)
TypicalOpticalmoduleevolution
800G
ZR
800G
PSM4/FR4
800G
PSM8/4
200G
AOC
100GQSFP28
DWDM
400GQ-DD
ZR
40GQSFP+
eSR4/LR4
100GQSFP28
CWDM4/PSM4
400GQ-DD
DR4/FR4
Scenario3(Spine-Leaf)
40GQSFP+
SR4
100GQSFP28
SR4/PSM4
400GQ-DD
SR8/DR4
Scenario2
(Leaf-TOR)
10GSFP+
AOC/DAC
25GSFP28
AOC/DAC
100G
AOC/DAC
Scenario1(TOR-Server)
2012
2016
2019
2022
Figure4–Typicalhyperscaledatacenterinterconnectroadmap
Forthetypicalhyperscaledatacenternetwork(DCN),deploying200Gserverswillrequirean800Gfabric.It’satrafficconvergencenetwork,whichdependsonthebalancebetweenservicerequirementsandCapexoptimization.Table1showsthedetailedreachrequirementsdependingontheDCNlayer.
Spine
.....
EnablingTheNextGenerationOfCloud&AiUsing800Gb/sOpticalModules
Table1–DetailedrequirementsofthetypicalhyperscaleDCN
Scenario
ServertoTOR
TORtoLeaf
LeaftoSpine
DCI
Bandwidth
200G
800G
800G
800G
Distance
4mwithinrack;
20mcross-rack
≥70m
100mispreferred
500m/2km
80km-120km
Modulesize
QSFP-DD/OSFP
QSFP-DD/OSFP
QSFP-DD/OSFP
QSFP-DD/OSFP
Figure5showsthedatacenternetworkarchitectureofanAIcluster,withlesslayersthanthehyperscalenetworkduetothefactthatitlacksanyconvergencebetweenthelayers.ThedesignofanAIcloudimpliesdifferenttrafficflowswithmuchlargerbigdataflowsandlessfrequentswitching.
Opticalmodulerateevolution(AI/HPCCluster)
Scenario2
400G
PSM4
800GPSM8
Scenario2
(Spine-Leaf)
.....
Leaf
Scenario1
2*200GE
2*400GE
Scenario1
(Leaf-Server)
Server
2019
2021
Figure5–AI/HPCopticalinterconnectroadmap
FortheAI/HPCclusterDCN,deploying400Gserverswillrequirean800Gfabric.ThisDCNdoesn’thaveanytrafficconvergence,withfasterdeploymentthaninthecaseofFigure4.Table2showsthedetailedrequirements.
Table2–DetailedrequirementsoftheAI/HPCclusterDCN
Scenario
ServertoLeaf
LeaftoSpine
Bandwidth
400G
800G
Distance
4mwithinrack;
20mcross-rack
500m
Modulesize
QSFP-DD/OSFP
QSFP-DD/OSFP
Latency
92ns(IEEEPMAlayer)
92ns(IEEEPMAlayer)
Notexplicitlyshown,butalsorelevant,areDCnetworksforsmallercloudorenterprises,wherethedownstreamtotheserverisdecoupledfromthefan-outratesoftheLeaf-Spinelayerandtypicallyhasslowerserverinterconnectspeeds.
04
www.800G
05
www.800G
MACANDHIGHERLAYERS
RECONCILIATION
400GMII400GMII
400GBASE-RPCS
400GBASE-RPCS
PMA
PMA
400GAUI-4C2M400GAUI-4C2M
PMA
PMA
800GMSA
PMD
PMD
MEDIUM
MEDIUM
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
3.8x100GSolutionforSRScenario
3.1800GSRscenariorequirementanalysis
Fortheclassof100m,theindustryisfacingthebasiclimitationsofVCSELsignalingatspeedsof100G/lane.Here,multi-modetechnologywilllikelyallowforreachesof30-50m,thusonlypartiallycoveringtheSRclass,whichisprimarilyemployedbyChinesehyperscaledatacenteroperators.TheMSAtargetsthedevelopmentofalow-cost8x100GmoduleforSRapplications,coveringthesweetspotof60-100m,asshowninFigure6.Particularly,theMSAisintendedtospecifyalowercosttransmittertechnologywiththepotentialtoleveragesub-linearcostscalingwithahighdegreeofintegration.Suchamodulewouldallowforanearlytime-to-marketdense800Gsolution.Alowcost800GSR8couldalsosupportthepotentialtrendsofanincreasingswitchradixanddecreasingservercount-per-rack,whichmaycombinetofavormiddle-of-the-rack(MoR)andend-of-the-rack(EoR)ortop-of-the-rack(ToR)architectures,byprovidingalowcostserial100Gserverinterconnect.AsshowninFigure6,theMSAwilldefinealowercostPMDforsinglemodefiberinterconnectsbasedon100GPAM4.DuetothelowlatencyrequirementsofSRapplications,KP4forwarderrorcorrection(FEC)willbeusedend-to-endwithasimpleclockrecoveryanddataequalizationunitinthemodule.Finally,theMSAwillspecifyaconnectorforthePSM8moduleswhichenablesafan-outto8x100G.
8x100G
DSP
8x100G
PSM8
Figure6–800GSR8blockdiagrams
3.2TechnicalFeasibilityof8x100Gsolutions
Asmentionedabove,signalingrateupto100Gperlanemaylimittheevolvementofmulti-modefiber(MMF)basedsolutionfrom400G-SR8to800G-SR8.BasedonthetheoreticalmodelusedinIEEE,wecanreckonthatthetransmissiondistancethatMMFcansupportisnomorethan50masthebaudrateupto50G(SeeTable3).ThelimitationfactorsarefromthelimitedbandwidthofVCSELandthemodaldispersionofMMF.Withtheoptimizationindevices,fibermediumaswellasenhancedDSPalgorithms,100mMMFtransmissionmayberealizedatthecostofhigherexpense,higherlatency,andlargerpowerconsumption.Hence,in800GPluggableMSA,werecommendthatthe800G-SR8scenarioistakenoverbySMFbasedsolution.
BER
BER
BER
FEC:KP
4
EMLon
linetest
result
EMLBERvs.OMA
10-8-6-4-202
OMA(dBm)
(a)
1.00E-021.00E-031.00E-041.00E-051.00E-061.00E-071.00E-08
1.00E-09
-
SiPh.BERvs.OMA
-10-8-6-4-202
OMA(dBm)
(b)
FEC:KP
4
SiPh.o
nlinetes
tresult
1.00E-021.00E-031.00E-041.00E-051.00E-061.00E-071.00E-08
1.00E-09
-10-8-6-4-202
EnablingTheNextGenerationOfCloud&AiUsing800Gb/sOpticalModules
Table3–FiberchannelbandwidthandtransmissiondistanceofMMFreckonedbythetheoreticalmodelusedinIEEE
Bitrate
50Gbps
50Gbps
100Gbps
100Gbps
SignalType
PAM4
PAM4
PAM4
PAM4
FiberType
OM4
OM3
OM4/OM5
OM3
Fiberchannelbandwidth(GHz•km)
2.301
1.541
2.301/2.377
1.541
Transmission
Distance(m)
100m
70m
50m
35m
IEEEstandards
50G-SR,100G-SR2
200G-SR4,400G-
SR8
Definednow
-
InordertoguaranteetheadvantagesonthecostandpowerconsumptionoftheSMFbasedsolution,reasonablePMDstandardrequirementsareindispensablein800G-SR8.ThePMDrequirementstobedefinedshouldensurethat1)diversetransmittertechniques,suchasDML,EML,andsiliconphotonics(SiPh),canbeappliedinsuchscenario;2)allthepotentialofthecomponentscanbereleasedadequatelytoachievethetargetinglinkperformance;3)keyparametersinPMDlayersshouldberelaxedasmuchaspossible,inthecontextofmaintainingareliablelinkperformance.Accordingtothesethreeprinciples,wewillconductsomebriefinvestigationsanddiscussionsasfollows.
ThepowerbudgetoftheSMFbased800G-SR8solutionwouldbequitesimilarwiththatdefinedinIEEE400G-SR8.TheonlyissuetobedeterminedistheinsertionlossofnewdefinedPSM8SMFconnectors.ItmeansthatthepowerbudgetinSRscenariocanbeachievedwithoutahitchbasedoncurrentlymatureopticalandelectroniccomponentsandDSPASICsusedin400GEopticalinterconnection.Therefore,apartfromspecifyingtheconnectorforthePSM8modules,thekeyissueforthedefinitionofPMDparametersin800SR8scenarioistofindoutthesuitableopticalmodulationamplitude(OMA),extinctionratio(ER),transmitterdispersioneyeclosurequaternary(TDECQ)ofthetransmitterandsensitivityofreceiver.Inordertosettheseparametersintothesuitableposition,thebiterrorration(BER)performanceofthediversetransmittersisinvestigatedandassessed.
DMLBERvs.OMA
FEC:KP
4
DMLo
nlinetes
tresult
OMA(dBm)
(c)
1.00E-021.00E-031.00E-041.00E-051.00E-061.00E-071.00E-08
1.00E-09
Figure7–(a)EMLBERvs.OMAresultsbasedoncommercialavailable400GDSPASICs;(b)SiliconPhotonicsBERvs.OMAresultsbasedoncommercialavailable400GDSPASICs,(c)DMLBERvs.OMAresultsbasedoncommercialavailable400GDSPASICs
Figure7showsthreeBERvsOMAcurvesof100GbpsPAM4signal,whichcorrespondtodifferenttransmittertechnologiesrespectively,asonlineresultsandobtainedusingcommercial400GDSPASICs.Actually,theBERperformancesofEMLandSiPhfor100GperlaneillustratedinFigure7(a)and(b)arewell-knownresultssincethesetwosolutionshavebeenextensivelydiscussedinthepastfewyears.ConsideringrelativelylowlaunchingopticalpowerofSiPhtransmitterandgoodenoughsensitivityofallthreesolutions,theminimumOMArequirementin800G-SR8isrecommendedtoberelaxedappropriately.
06
www.800G
07
www.800G
400GBASE-R
PCS
PMA
8x112G
DSP
4x224G
PSM4
MACANDHIGHERLAYERS
RECONCILIATION
400GMII
400GAUI-4C2M
400GBASE-R
PCS
PMA
PMA
PMA
PMD
400GMII
400GAUI-4C2M
800GMSA
MEDIUM
NewPMD
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
TheBERperformanceoftheDMLinFigure7(c)showsthattheOMAsensitivityinthiscaseiscomparablewiththatinthecaseofEMLorSiPh,eventhoughthecommercialDMLusedinherehasrelativelylowerbandwidththanEMLandSiPh.ThisresultimpliesthatthecommercialDSPASICsusedinpracticehavemuchstrongerequalizationabilitythanthereferencereceiverIEEEdefinedin400GE,andthusitcansupportthetransmitterwithcomparativelylowbandwidthtoachievethetargetingpowerbudget800G-SRrequired.InordertoreleasethepotentialoftheDSPunitadequatelyfor800GSR8PMD,referencereceiverforcompliancetest(i.e.TDECQ)requirestobere-definedtomatchthepracticalequalizationabilityofcommercialDSPs,i.e.moretapsnumbersthancurrentlydefined5tapsaredesired.Meanwhile,consideringtherelativelylowsensitivityrequirementinSRscenarioandrestrictionofthepowerconsumptionofthe800Gmodule,alowcomplexityDSPmodeisrecommendedinfuturemodules.AnotherkeyparameterisERthatisrelatedtothepowerconsumptiondirectly.AlowerERisfavoredaslongasitdoesnotimpactthereliabilityofthelink.Basedontheaboveanalysis,webelievethatalowcostandpowerconsumptionSMF-basedsolutionisfeasibleandpromisingin800G-SR8scenario.
4.4x200GSolutionforFRScenario
4.1800GFRscenariorequirementanalysis
200GperlanePAM4technologyisthenextmajortechnologicalstepforopticalintensitymodulated,directdetectioninterconnectsandwillbethefoundationfora4-lane800Gconnectivity,aswellasanessentialbuildingblockforfuture1.6Tb/sinterconnects.AsshowninFigure8,theMSAwilldefinethefullPMDandpartialPMAlayersincludinganewlowpower,lowlatencyFECasawrapperontopoftheKP4FECofthe112Gelectricalinputsignals,inordertoimprovethenetcodinggain(NCG)ofthemodem.Oneofthekeygoalsofthisindustryalliancewillbethedevelopmentofnewwidebandwidthelectricalandopticalanalogcomponentsforthetransmitterandreceiverassembliesincludingdigital-to-analogandanalog-to-digital(AD/DA)converters.Inordertoachievetheaggressivepowerenveloptargetsofpluggablemodules,theDSPchipswillbedesignedinCMOSprocesswithlowernmnodeandemploylowpowersignalprocessingalgorithmstoachieveequalizationofthechannel.
8x112G
DSP
1234
Mux
4x224G
CWDM4
Figure8–800GFR4/PSM4blockdiagrams
EnablingTheNextGenerationOfCloud&AiUsing800Gb/sOpticalModules
4.2Technicalfeasibilityof4x200Gsolutions
Consideringthatatemperaturecontroller(TEC)isrequiredinLAN-WDM,whichisnotdesiredin200G/lanescenarios,thepowerbudgetwillbeanalyzedbasedonCWDM4.Linkinsertionloss,multipathinterference(MPI),differentialgroupdelay(DGD),andtransmitterdispersionpenalty(TDP)arethecontributionstothelinkpowerbudget.AccordingtothemodelreleasedinIEEEstandards,MPIandDGDpenaltyiscalculatedaslistedinTable4.Inviewoftheincreasedbaudrateof200Gperlane,thedispersionpenaltyisexpectedtobelargerthanthatin100Gperlane.Areasonablesuggestionfortransmitterdispersionpenalty(TDP)is3.9dB.Hence,takingintoaccountthemarginforreceiveragingandcouplingloss,aswellasthetypicallaunchingopticalpowervalueofthetransmitter,wethinkthereceiversensitivityrequiredshouldbearound-5dBm.
Table4–Powerbudgetanalysisof800G-FR4
Description
LinkinsertionlossMPIpenaltyDGDpenalty
TDP
Simulationvalue
4dB
0.4dB
0.4dB
3.9dB
SinceSNRdeterioratesabout3dBcomparedwith100G/laneasthebaudratedoubles,itisexpectablethatastrongerFECisnecessarytomaintainthereasonablereceiversensitivity(~-5dBm)andmarginoferrorfloor.Therefore,asmentionedabove,onthetopoftheKP4,anadditionallowpower,lowlatencyFECasawrapperwillbecarriedoutintheopticalmodule.ThethresholdvalueofthenewFECisdeterminedaccordingtothelinkperformanceandpowerbudgetrequirement.
Linkperformanceof200G/paneispresentedusingsimulationandexperiment.TheparametersofthedevicesadoptedinthelinkarelistedinTable5.TheexperimentalresultshowsthatthereceiversensitivitycanreachthetargetvaluewhilethenewFEC’sthresholdissetto2E-3asdepictedinFigure9(a).However,inthisexperiment,maximumlikelihoodsequenceestimation(MLSE)wasrequiredtocompensatetheexcessiveinter-symbol-interferenceinducedbychannelbandwidthlimitation.ThedashlineinFigure9(a)showsthesimulationbasedonthemodelinwhichthemeasuredparametersofthedevicesusedintheexperimentareadopted.Togetherwithexperimentalresults,simulationsshowthatthesystemislimitedbythebandwidthofcomponents,suchasAD/DA,driverandE/Omodulators.Consideringthathighbandwidthcomponentsareexpectedtobeavailableintheyearstocome,simulationresultsbyusingthesamesystemmodelbutwithexpandedbandwidthisillustratedinFigure9(b).Itshowsthereceiversensitivityof@2E-3canmeettheabove-mentionedrequirementwithonlyFFEequalizationintheDSPunit,whichisinaccordancewiththetheoreticalexpectation.
Table5–Parameterscomparisonbetweensimulationandexperiment
Description
3dBBandwidthofTOSA
3dBBandwidthofROSA
3dBBandwidthofAD/DAEffectiveNumberofBits(ENOB)
RIN-OMA
ChromaticDispersion
TIANoise
PDResponsivity
ValueinExperimentalSetup
42GHz
56GHz*
37GHz
4.5
~-137dB/Hz
7ps/nm
15pA/sqrt(Hz)0.5A/W
EnhancedvalueinSimulation
56GHz
56GHz
50GHz
4.5
-137dB/Hz
7ps/nm
15pA/sqrt(Hz)0.5A/W
*ROSAinexperimentsetupisahigh-bandwidthinstrument.
08
www.800G
09
www.800G
SolutionB
SolutionA
Experimentvs.Simulation
Exp-FFEExp-FFE+M
LSE
Simu-FFESimu-FFE+FEC:2E-3
MLSE
FEC:KP4
-8-6-4-2024
OMA(dBm)
(a)
1.00E-05
1.00E-01
1.00E-02
1.00E-03
1.00E-04
1.00E+00
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
Basedontheaboveanalysis,TDECQisstillsuggestedtobefollowedincompliancetestinginthe800G-FR4scenario.However,FFEtapnumbersofthereferencereceiveradoptedinTDECQmeasurementisanticipatedtobeincreasedtoareasonablevalueandneedstobefurtherdiscussed.Additionally,itshouldbenotedthatiftheabilityoffuturedevicetargeting100Gbaudunderperformsourexpectation,morecomplicatedalgorithms(e.g.MLSE)maybeusedinFR4scenarios,whichimpliesthatanewcompliancemetrologymustbedeveloped.
Simulation@ExpectedParameters
8-6-4-2024
OMA(dBm)
(b)
Simu-FFEFEC:2E-3
1.00E-05
1.00E-01
1.00E-02
1.00E-03
1.00E-04
1.00E+00
-
Figure9–(a)200G/laneexperimentandsimulationresultsmatchwellwitheachother;(b)200G/lanesimulationresult:FFE
equalizationcanmeettherequirementofpowerbudgetwhencomponentbandwidthinlinkisimproved.
4.3Packagingfor4x200Gsolution
Forthe4x200Gmodule,thepackagingforboththetransmitterandreceiverneedstobereconsideredtoensuresignalintegritywithintherangeundertheNyquistfrequencypoint(56GHz).TwopossiblesolutionsforthetransmitterareillustratedinFigure10.SolutionAisatraditionalapproachwherethemodulatordriver(DRV)isclosetothemodulator.Incontrast,inSolutionB,DRVinflip-chipdesignisco-packagedwiththeDSPunittooptimizethesignalintegrityontheRFtransmissionline.Bothofthesetwosolutionscanberealizedbythestate-of-arttechnology.PreliminarysimulationsshowthatSolutionBcanachievegoodresultsandcanensureabandwidthlargerthan56GHz.TheripplesontheS21curveofSolutionAareduetothereflectiononDRVinputandcanbeoptimizedthroughthematchingdesignoftheDRV.Eventually,itisexpectedthattheoverallperformanceofSolutionAcanbefurtherimproved.
-24
-26
-28
-30
-32
-34
01020304050607080
freq.GHz
Figure10–Twopackagingsolutionsforthetransmitter.TheS21simulationputstheRFline(markedinred),thewire-bondingand
modulatorintoconsideration,andthebandwidth@-3dBoftheEMLCOCis60GHz.
KP4
KP4
800G
800G
Legacy
C2M
C2C
C2M
Concatenated
EnablingTheNextGenerationOfCloud&AiUsing800Gb/sOpticalModules
Atthereceiveside,thehighbandwidthphotodiode(PD)withlessparasiticcapacitanceandthehighbandwidthtrans-impedanceamplifier(TIA)areneededtoensurethebandwidthperformanceofthereceiver.Thereisnoobstacletorealizingthesecomponentsbythestate-of-artsemiconductortechnology.Asfarasweknow,somestakeholdersinindustryalreadyputmucheffortindevelopingthesecomponentsthataredesiredtobeavailablein1~2years.Ontheotherhand,theconnectionbetweenPDandTIAisalsocritical.Theparasiticeffectintheconnectionalwaysdegradestheperformanceandthusshouldbecarefullyanalyzedandoptimized.
4.4Forwarderrorcorrection(FEC)codefor200Gperlane
AstrongerFECwithathresholdperformanceof2E-3isrequiredtoachievethesensitivityrequirementof200GPAMreceiver.Figure11illustratesacomparisonbetweenterminatedschemeandconcatenatedscheme.Inthefirstoption,KP4isterminatedandreplacedwithanewFECwithlargeroverhead.TerminationhasadvantagesonNCGandoverhead.Inthesecondoption,aconcatenatedschemekeepsKP4astheoutercodeandcombinesitwithanewinnercode.Concatenationhasadvantagesonlatencyandpowerconsumptionandismoresuitablein800G-FR4applicationscenario.
New100G/laneAUIC2M
8
100G/laneAUI
Legacy
BER<1E-5
BER<1E-5
BER<2E-3
Terminated
KP4
NewFEC
KP4
Concatenated
KP4&newFEC
Figure11–800GFEC:TerminatedFECschemevsConcatenatedFECscheme
SerialconcatenationofKP4andanalgebraiccodeshowninFigure12isastraightforwardsolutiontoachieve2E-3BERthresholdperformance,aswellastominimizethepowerconsumptionandend-to-endlatency,sinceKP4isnotterminated.Noisewithbiterrorratepe<1E-5introducedinC2MelectricalinterfaceistransparenttoPMA.TheoverallperformanceoftheconcatenatedschemewillnotbedeterioratedbypesincepeismuchlowerthanthedecodingthresholdofKP4.HammingcodeswithsingleerrorcorrectingcapabilityandBCHcodeswithdoubleerrorcorrectingcapabilityaregoodcandidatesforthealgebraic
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校人防教育工作总结
- 2023年高考生物第一次模拟考试生物试题(江苏B卷)(参考答案)
- 市第十三次党代会宣传方案
- 路段交通调查课程设计
- 光伏电站技术监督管理制度
- 1.应急设施、装备、物资管理制度
- 合租协议书(2篇)
- 什么叫案例课程设计法规
- 公司培训部教师节活动策划方案
- 勘察合同范本(2篇)
- 2024年四川甘孜州事业单位招聘历年高频难、易错点500题模拟试题附带答案详解
- 专题08 向量的运算(上海中考特色题型)30题(解析版)
- 年度成本控制与削减方案计划
- 2024内蒙古能源发电投资集团限公司金山第二热电分公司招聘120人高频难、易错点500题模拟试题附带答案详解
- 2024市场营销知识竞赛题库(试题及答案169题)
- 四级劳动关系协调员题库+答案
- 北师大小学数学二年级上册课件:《数松果》教学课件
- 【课件】第四单元课题3+物质组成的表示(第一课时)-2024-2025学年九年级化学人教版(2024)上册
- 河南省创新发展联盟2024-2025学年高一上学期9月月考英语试题
- 中华民族现代文明有哪些鲜明特质?建设中华民族现代文明的路径是什么?参考答案01
- 工伤预防宣传和培训 投标方案(技术方案)
评论
0/150
提交评论