版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年安徽省黄山市海阳中学高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列四个函数中,满足“对任意,当时,都有”的是A.
B.
C. D.参考答案:A2.(文科)是方程为的曲线表示椭圆时的
A.充分条件
B.必要条件
C.充分必要条件
D.非充分非必要条件参考答案:B3.在(1﹣x3)(1+x)10展开式中,x5的系数是()A.﹣297 B.﹣252 C.297 D.207参考答案:D【考点】DC:二项式定理的应用.【分析】先将多项式展开,转化成两二项式系数的差,利用二项展开式的通项公式求出第r+1项,令x的指数为5,2求出二项展开式的系数.【解答】解:(1﹣x3)(1+x)10=(1+x)10﹣x3(1+x)10∴(1﹣x3)(1+x)10展开式的x5的系数是(1+x)10的展开式的x5的系数减去(1+x)10的x2的系数∵(1+x)10的展开式的通项为Tr+1=C10rxr令r=5,2得(1+x)10展开式的含x5的系数为C105;展开式的含x2的系数为C102C105﹣C102=252﹣45=207故选项为D【点评】本题考查等价转化的能力及利用二项展开式的通项公式解决二项展开式的特定项问题.4.在中,,则此三角形解的个数为A.0
B.1
C.2
D.无数个
参考答案:B5.已知在中角的对边是,若,则(
)
A.
B.
C.
D.参考答案:C6.若则是的(
)条件
A.充分不必要
B.必要不充分
C.充要
D.既不充也不必要参考答案:B解析:7.用更相减损术得111与148的最大公约数为()A.1 B.17 C.23 D.37参考答案:D【考点】用辗转相除计算最大公约数.【专题】计算题;综合法;推理和证明.【分析】用更相减损术求111与148的最大公约数,先用大数减去小数,再用减数和差中较大的数字减去较小的数字,这样减下去,知道减数和差相同,得到最大公约数.【解答】解:用更相减损术求111与148的最大公约数.148﹣111=37,111﹣37=7474﹣37=37,∴111与148的最大公约数37,故选:D.【点评】本题考查辗转相除法和更相减损术,这是案例中的一种题目,这种题目解题时需要有耐心,认真计算,不要在数字运算上出错.8.已知方程的图象是双曲线,那么k的取值范围是
()A.
B.
C.
或
D.参考答案:C略9.某程序框图如图1所示,现输入如下四个函数:,,,,则可以输出的函数是(
)A.
B.
C.
D.参考答案:B有程序框图可知可以输出的函数既是奇函数,又要存在零点.满足条件的函数是B.10.如图是一个几何体的三视图,则此几何体的体积是()A. B. C. D.参考答案:D【考点】L!:由三视图求面积、体积.【分析】由已知得到几何体是圆锥与圆柱的组合体,由图中数据求体积.【解答】解:由已知得到几何体是圆锥与圆柱的组合体,其中圆锥的底面半径为2,高为2,圆柱的底面半径为2,高为1,所以体积为:;故选D.二、填空题:本大题共7小题,每小题4分,共28分11.(x2+x+2)5的展开式中,x7的系数为.参考答案:50【考点】二项式定理的应用.【分析】根据(x2+x+2)5的展开式的含x7的项由两类构成,然后求出各类的含x7的项,再将各个项加起来,即可得到所求的项的系数.【解答】解:(x2+x+2)5的展开式的含x7的项由5个括号中的两个括号出x2,三个括号出x,或三个括号出x2,一个括号出x,一个括号出2,故含x7的项是C52(x2)2x3+C53(x2)3C21?x?2=10x7+40x7=50x7,故含x7的项的系数是50,故答案为:50.12.已知数列的前项的和为,则数列的通项公式为
参考答案:13.(坐标系与参数方程)直线被曲线(为参数)所截得的弦长为_________.参考答案:略14.已知圆C的圆心与点P(﹣2,1)关于直线y=x+1对称.直线3x+4y﹣11=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为.参考答案:x2+(y+1)2=18【考点】直线与圆的位置关系.【专题】计算题;压轴题.【分析】要求圆C的方程,先求圆心,设圆心坐标为(a,b),根据圆心与P关于直线y=x+1对称得到直线PC垂直与y=x+1且PC的中点在直线y=x+1上分别列出方程①②,联立求出a和b即可;再求半径,根据垂径定理得到|AB|、圆心到直线AB的距离及圆的半径成直角三角形,根据勾股定理求出半径.写出圆的方程即可.【解答】解:设圆心坐标C(a,b),根据圆心与P关于直线y=x+1对称得到直线CP与y=x+1垂直,而y=x+1的斜率为1,所以直线CP的斜率为﹣1即=﹣1化简得a+b+1=0①,再根据CP的中点在直线y=x+1上得到=+1化简得a﹣b﹣1=0②联立①②得到a=0,b=﹣1,所以圆心的坐标为(0,﹣1);圆心C到直线AB的距离d==3,|AB|=3所以根据勾股定理得到半径,所以圆的方程为x2+(y+1)2=18.故答案为:x2+(y+1)2=18【点评】此题是一道综合题,要求学生会求一个点关于直线的对称点,灵活运用垂径定理及点到直线的距离公式解决数学问题.会根据圆心和半径写出圆的方程.15.在长方体ABCD-A1B1C1D1中,AA1=AD=2AB,若E,F分别为线段A1D1,CC1的中点,则直线EF与平面ABB1A1所成角的余弦值为________.参考答案:16.如图,在三棱锥P﹣ABC中,PA⊥平面ABC,AB=BC,PA=AC,E为PC上的动点,当BE⊥PC时,的值为.参考答案:
【考点】点、线、面间的距离计算.【分析】取特殊值,设AB⊥BC,AB=BC=,以B为原点,BA为x轴,BC为y轴,过B作平面ABC的垂线为z轴,建立空间直角坐标系,利用向量法能求出当BE⊥PC时,的值为.【解答】解:取特殊值,设AB⊥BC,AB=BC=,以B为原点,BA为x轴,BC为y轴,过B作平面ABC的垂线为z轴,建立空间直角坐标系,则B(0,0,0),P(,2,0),C(0,,0),设E(a,b,c),=λ(0≤λ≤1),则,即(a,b﹣,c)=λ(,0),∴,∴E(),∴=(),=(﹣,,0),∵BE⊥PC,∴=﹣2λ+﹣(2﹣)2λ=0,解得.∴当BE⊥PC时,的值为.故答案为:.17.从一批含有件正品、件次品的产品中,不放回地任取件,则取得次品数的概率分布为
.
参考答案:
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.从某校高二年级名男生中随机抽取名学生测量其身高,据测量被测学生的身高全部在到之间.将测量结果按如下方式分成组:第一组,第二组,…,第八组,如下右图是按上述分组得到的频率分布直方图的一部分.已知第一组与第八组的人数相同,第六组、第七组和第八组的人数依次成等差数列.频率分布表如下:
频率分布直方图如下:分组频数频率频率/组距……
(1)求频率分布表中所标字母的值,并补充完成频率分布直方图;(2)若从身高属于第六组和第八组的所有男生中随机抽取名男生,记他们的身高分别为,求满足:的事件的概率.参考答案:(1)由频率分布直方图得前五组的频率是,第组的频率是,所以第组的频率是,所以样本中第组的总人数为人.由已知得:……①成等差数列,……②由①②得:,所以,……………4分频率分布直方图如下图所示:
……………6分
(2)由(1)知,身高在内的有人,设为,身高在内的有人,设为若,则有共种情况;
………8分若,则有共种情况;若,或,,则有共种情况
………………10分∴基本事件总数为,而事件“”所包含的基本事件数为,故……………12分略19.(10分)安排5名歌手的演出顺序.(1)要求歌手甲不第一个出场,有多少种不同的排法?(2)要求歌手甲不第一个出场,且歌手乙不最后一个出场,有多少种不同的排法?参考答案:解(1)先从甲以外的4名歌手中选1人出场,其他四名歌手任意排列,所以,共有CA=96种演出顺序.(2)(间接法):A-2A+A=78(种)或分类完成,第一类:甲最后一个出场,有A=24(种)第二类:甲不最后一个出场,有CCA=54(种)所以,共有24+54=78(种)演出顺序.略20.(本小题满分12分)求以椭圆的焦点为焦点,且过点的双曲线的标准方程.参考答案:由椭圆的标准方程可知,椭圆的焦点在轴上设双曲线的标准方程为
-----------------------2分根据题意,
--------------------6分解得或(不合题意舍去)
-----------------------10分∴双曲线的标准方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工作计划幼儿中班教学工作计划
- 学校安全月活动方案工作计划范文
- 2025房地产员工个人工作计划
- 2025学生会心理协会工作计划
- 庭院学堂·睦邻点工作计划
- 2025年护理部培训计划
- 四年级数学老师201年教学计划范文
- 有关对班主任的工作计划范文集合
- 《水产品加工技术》课件
- 土地承包合同变更通知
- 微积分(II)知到智慧树章节测试课后答案2024年秋南昌大学
- 二零二四年光伏电站建设与运营管理合同2篇
- 2024届浙江台州高三一模英语试题含答案
- 2024版:离婚法律诉讼文书范例3篇
- 一专科一特色护理汇报
- 小学体育新课标培训
- 2024年国考申论真题(行政执法卷)及参考答案
- 江苏省南通市2024-2025学年高一上学期11月期中英语试题(无答案)
- 信息安全意识培训课件
- 攀岩智慧树知到期末考试答案章节答案2024年华中农业大学
- 饮食的健康哲学智慧树知到期末考试答案章节答案2024年青岛大学
评论
0/150
提交评论