2024届西安市东仪中学高二数学第一学期期末复习检测试题含解析_第1页
2024届西安市东仪中学高二数学第一学期期末复习检测试题含解析_第2页
2024届西安市东仪中学高二数学第一学期期末复习检测试题含解析_第3页
2024届西安市东仪中学高二数学第一学期期末复习检测试题含解析_第4页
2024届西安市东仪中学高二数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届西安市东仪中学高二数学第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.第届全运会于年月在陕西西安顺利举办,其中水上项目在西安奥体中心游泳跳水馆进行,为了应对比赛,大会组委会将对泳池进行检修,已知泳池深度为,其容积为,如果池底每平方米的维修费用为元,设入水处的较短池壁长度为,且据估计较短的池壁维修费用与池壁长度成正比,且比例系数为,较长的池壁维修费用满足代数式,则当泳池的维修费用最低时值为()A. B.C. D.2.设变量,满足约束条件则的最小值为()A.3 B.-3C.2 D.-23.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则4.下列直线中,倾斜角为45°的是()A. B.C. D.5.已知等比数列的首项为1,公比为2,则=()A. B.C. D.6.已知双曲线的一条渐近线方程为,且与椭圆有公共焦点.则C的方程为()A. B.C. D.7.已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为().A. B.C. D.8.已知数列为等比数列,则“为常数列”是“成等差数列”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件9.函数f(x)=xex的单调增区间为()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)10.德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时认识到,求曲线的切线的斜率依赖于纵坐标的差值和横坐标的差值,以及当此差值变成无限小时它们的比值,这也正是导数的几何意义.设是函数的导函数,若,且对,,且总有,则下列选项正确的是()A. B.C. D.11.已知双曲线,则双曲线的渐近线方程为()A. B.C. D.12.在长方体中,()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若点P为双曲线上任意一点,则P满足性质:点P到右焦点的距离与它到直线的距离之比为离心率e,若C的右支上存在点Q,使得Q到左焦点的距离等于它到直线的距离的6倍,则双曲线的离心率的取值范围是______14.已知点是椭圆上的一点,分别为椭圆的左、右焦点,已知=120°,且,则椭圆的离心率为___________.15.若,满足约束条件,则的最小值为______.16.等轴(实轴长与虚轴长相等)双曲线的离心率_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(为自然对数的底数).(1)求函数的单调区间;(2)若函数有且仅有2个零点,求实数的值.18.(12分)设,分别是椭圆()的左、右焦点,E的离心率为.短轴长为2.(1)求椭圆E的方程:(2)过点的直线l交椭圆E于A,B两点,是否存在实数t,使得恒成立?若存在,求出t的值;若不存在,说明理由.19.(12分)已知圆D经过点A(-1,0),B(3,0),C(1,2).(1)求圆D的标准方程;(2)若直线l:与圆D交于M、N两点,求线段MN的长度.20.(12分)在平面直角坐标系中,动点到点的距离等于点到直线的距离.(1)求动点的轨迹方程;(2)记动点的轨迹为曲线,过点的直线与曲线交于两点,在轴上是否存在一点,使若存在,求出点的坐标;若不存在,请说明理由.21.(12分)从①;②;③这三个条件中任选一个,补充在下面问题中,并作答设等差数列的前n项和为,,______;设数列的前n项和为,(1)求数列和的通项公式;(2)求数列的前项和注:作答前请先指明所选条件,如果选择多个条件分别解答,按第一个解答计分22.(10分)某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,所得到如图所示的频率分布直图(1)求图中实数的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】根据题意得到泳池维修费用的的解析式,再利用导数求出最值即可【题目详解】解:设泳池维修的总费用为元,则由题意得,则,令,解得,当时,;当时,,故当时,有最小值因此,当较短池壁为时,泳池的总维修费用最低故选A2、D【解题分析】转化为,则最小即直线在轴上的截距最大,作出不等式组表示的可行域,数形结合即得解【题目详解】转化为,则最小即直线在轴上的截距最大作出不等式组表示的可行域如图中阴影部分所示,作出直线,平移该直线,当直线经过时,在轴上的截距最大,最小,此时,故选:D3、C【解题分析】先举例说明ABD不成立,再根据不等式性质说明C成立.【题目详解】当时,满足,但不成立,所以A错;当时,满足,但不成立,所以B错;当时,满足,但不成立,所以D错;因为所以,又,因此同向不等式相加得,即C对;故选:C【题目点拨】本题考查不等式性质,考查基本分析判断能力,属基础题.4、C【解题分析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【题目详解】由直线倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C5、D【解题分析】数列是首项为1,公比为4的等比数列,然后可算出答案.【题目详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D6、B【解题分析】根据已知和渐近线方程可得,双曲线焦距,结合的关系,即可求出结论.【题目详解】因为双曲线的一条渐近线方程为,则①.又因为椭圆与双曲线有公共焦点,双曲线的焦距,即c=3,则a2+b2=c2=9②.由①②解得a=2,b=,则双曲线C的方程为.故选:B.7、A【解题分析】求出点坐标,做出关于准线的对称点,利用连点之间相对最短得出为的最小值【题目详解】解:抛物线的准线方程为,,到准线的距离为2,故点纵坐标为1,把代入抛物线方程可得不妨设在第一象限,则,点关于准线的对称点为,连接,则,于是故的最小值为故选:A【题目点拨】本题考查了抛物线的简单几何性质,属于基础题8、C【解题分析】先考虑充分性,再考虑必要性即得解.【题目详解】解:如果为常数列,则成等差数列,所以“为常数列”是“成等差数列”的充分条件;等差数列,所以,所以数列为,所以数列是常数列,所以“为常数列”是“成等差数列”的必要条件.所以“为常数列”是“成等差数列”的充要条件.故选:C9、D【解题分析】求出,令可得答案.【题目详解】由已知得,令,得,故函数f(x)=xex的单调增区间为(-1,+∞).故选:D.10、D【解题分析】由,得在上单调递增,并且由的图象是向上凸,进而判断选项.【题目详解】由,得在上单调递增,因为,所以,故A不正确;对,,且,总有,可得函数的图象是向上凸,可用如图的图象来表示,由表示函数图象上各点处的切线的斜率,由函数图象可知,随着的增大,的图象越来越平缓,即切线的斜率越来越小,所以,故B不正确;,表示点与点连线的斜率,由图可知,所以D正确,C不正确.故选:D.【题目点拨】本题考查以数学文化为背景,导数的几何意义,根据函数的单调性比较函数值的大小,属于中档题型.11、A【解题分析】求出、的值,可得出双曲线的渐近线方程.【题目详解】在双曲线中,,,因此,该双曲线的渐近线方程为.故选:A.12、D【解题分析】根据向量的运算法则得到,带入化简得到答案.【题目详解】在长方体中,易知,所以.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】若Q到的距离为有,由题设有,结合双曲线离心率的性质,即可求离心率的范围.【题目详解】由题意,,即,整理有,所以或,若Q到的距离为,则Q到左、右焦点的距离分别为、,又Q在C的右支上,所以,则,又,综上,双曲线的离心率的取值范围是.故答案为:【题目点拨】关键点点睛:若Q到的距离为,根据给定性质有Q到左、右焦点的距离分别为、,再由双曲线性质及已知条件列不等式组求离心率范围.14、【解题分析】设,由余弦定理知,所以,故填.15、0【解题分析】作出约束条件对应的可行域,当目标函数过点时,取得最小值,求解即可.【题目详解】作出约束条件对应的可行域,如下图阴影部分,联立,可得交点为,目标函数可化为,当目标函数过点时,取得最小值,即.故答案为:0.【题目点拨】本题考查线性规划,考查数形结合的数学思想的应用,考查学生的计算求解能力,属于基础题.16、【解题分析】由题意可知,,由,化简可求离心率.【题目详解】由题意可知,,两边同时平方,得,即,,所以离心率,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)函数的单调递减区间为,单调递增区间为,(2)【解题分析】(1)利用导数求得的单调区间.(2)利用导数研究的单调性、极值,从而求得的值.【小问1详解】由,得,令,得或;令,得.∴函数的单调递减区间为,单调递增区间为,.【小问2详解】∵,∴.当时,;当时,∴的单调递减区间为,;单调递增区间为.∴的极小值为,极大值为.当时,;当时,.又∵函数有且仅有2个零点,∴实数的值为.18、(1)(2)存在,【解题分析】(1)由条件列出,,的方程,解方程求出,,,由此可得椭圆E的方程:(2)当直线的斜率存在时,设直线的方程为,联立直线的方程与椭圆方程化简可得,设,,可得,,由此证明,再证明当直线的斜率不存在时也成立,由此确定存在实数t,使得恒成立【小问1详解】由已知得,离心率,所以,故椭圆E的方程为.【小问2详解】当直线l的斜率存在时,设,,,联立方程组得,,所以,..,,所以.所以.当直线l的斜率不存在时,,联立方程组,得,.,,所以.综上,存在实数使得恒成立.【题目点拨】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.19、(1)(2)【解题分析】(1)设圆D的标准方程,利用待定系数法即可得出答案;(2)利用圆的弦长公式即可得出答案.【小问1详解】解:设圆D的标准方程,由题意可得,解得,所以圆D标准方程为;【小问2详解】解:由(1)可知圆心,半径,所以圆心D(1,0)到直线l:的距离,所以.20、(1);(2)存在,.【解题分析】(1)利用抛物线的定义即求;(2)由题可设直线的方程为,利用韦达定理法结合条件可得,即得.【小问1详解】因为动点到点的距离等于点到直线的距离,所以动点到点的距离和它到直线的距离相等,所以点的轨迹是以为焦点,以直线为准线的抛物线,设抛物线方程为,由,得,所以动点的轨迹方程为.【小问2详解】由题意可知,直线的斜率不为0,故设直线的方程为,.联立,得,恒成立,由韦达定理,得,,假设存在一点,满足题意,则直线的斜率与直线的斜率满足,即,所以,所以解得,所以存在一点,满足,点的坐标为.21、(1)条件选择见解析,,(2)【解题分析】(1)设数列的首项为,公差为d,选①由求解;选②由求解;选③由求解;则,由,利用数列通项与前n项和公式求解;(2)易知,再利用错位相减法求解.【小问1详解】解:设数列的首项为,公差为d,选①得,则,选②得,则,选③得,则,所以数列的通项公式为因为,所以当时,,则当时,,则,所以是以首项为2,公比为2的等比数列,所以【小问2详解】因为,所以数列的前n项和①②①-②得∴,则22、(1)a=0.03;(2)544人;(3).【解题分析】(1)根据图中所有小矩形的面积之和等于1求解.

(2)根据频率分布直方图,得到成绩不低于60分的频率,再根据该校高一年级共有学生640人求解.

(3)由频率分布直方图得到成绩在[40,50)和[90,100]分数段内的人数,先列举出从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生的基本事件总数,再得到两名学生的数学成绩之差的绝对值不大于10”的基本事件数,代入古典概型概率求解.【题目详解】(1)∵图中所有小矩形的面积之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.

(2)根据频率分布直方图,成绩不低于60分的频率为1−10×(0.0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论