2024学年陕西省西安市西电附中高二上数学期末经典试题含解析_第1页
2024学年陕西省西安市西电附中高二上数学期末经典试题含解析_第2页
2024学年陕西省西安市西电附中高二上数学期末经典试题含解析_第3页
2024学年陕西省西安市西电附中高二上数学期末经典试题含解析_第4页
2024学年陕西省西安市西电附中高二上数学期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024学年陕西省西安市西电附中高二上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分又不必要条件2.已知集合,从集合A中任取一点P,则点P满足约束条件的概率为()A. B.C. D.3.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.54.已知,数列,,,与,,,,都是等差数列,则的值是()A. B.C. D.5.新冠肺炎疫情的发生,我国的三大产业均受到不同程度的影响,其中第三产业中的各个行业都面临着很大的营收压力.2020年7月国家统计局发布了我国上半年国内经济数据,如图所示,图1为国内三大产业比重,图2为第三产业中各行业比重下列关于我国上半年经济数据的说法正确的是()A.第一产业的生产总值与第三产业中“其他服务业”的生产总值基本持平B.第一产业的生产总值超过第三产业中“金融业”的生产总值C.若“住宿和餐饮业”生产总值为7500亿元,则“房地产”生产总值为22500亿元D.若“金融业”生产总值为41040亿元,则第二产业生产总值为166500亿元6.已知命题:,命题:则是的()条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要7.在等差数列中,为数列的前项和,,,则数列的公差为()A. B.C.4 D.8.双曲线的离心率为,则其渐近线方程为A. B.C. D.9.直线与圆的位置关系是()A.相交 B.相切C.相离 D.都有可能10.有这样一道题目:“戴氏善屠,日益功倍.初日屠五两,今三十日屠讫,向共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?"在这个问题中,该屠夫前5天所屠肉的总两数为()A.35 B.75C.155 D.31511.已知向量a→=(1,1,k),A. B.C. D.12.已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点.若,则椭圆的离心率是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,且,则_____________14.等差数列前项之和为,若,则________15.如图,椭圆的左、右焦点分别为,过椭圆上的点作轴的垂线,垂足为,若四边形为菱形,则该椭圆的离心率为_________.16.设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,为自然对数的底数.(1)当时,证明,,;(2)若函数在上存在极值点,求实数的取值范围.18.(12分)如图所示,在四棱锥中,BC//平面PAD,,E是PD的中点(1)求证:CE//平面PAB;(2)若M是线段CE上一动点,则线段AD上是否存在点,使MN//平面PAB?说明理由19.(12分)已知椭圆C:的左右焦为,,点是该椭圆上任意一点,当轴时,,(1)求椭圆C的标准方程;(2)记,求实数m的最大值20.(12分)已知函数(1)若在上不单调,求a的范围;(2)试讨论函数的零点个数21.(12分)在中,角A,B,C的对边分别为a,b,c,且求A和B的大小;若M,N是边AB上的点,,求的面积的最小值22.(10分)已知等差数列满足,,的前项和为.(1)求及;(2)令,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据充分条件和必要条件的定义判断即可求解.【题目详解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分条件,故选:B.2、C【解题分析】根据圆的性质,结合两条直线的位置关系、几何概型计算公式进行求解即可.【题目详解】,圆心坐标为,半径为,直线互相垂直,且交点为,由圆的性质可知:点P满足约束条件的概率为,故选:C3、C【解题分析】作出不等式组对应的可行域,再利用数形结合分析求解.【题目详解】解:作出不等式组对应的可行域为如图所示的阴影部分区域,由得,它表示斜率为纵截距为的直线系,当直线平移到点时,纵截距最大,最大.联立直线方程得得.所以.故选:C4、A【解题分析】根据等差数列的通项公式,分别表示出,,整理即可得答案.【题目详解】数列,,,和,,,,各自都成等差数列,,,,故选:A5、D【解题分析】根据扇形图及柱形图中的各产业与各行业所占比重,得到第三产业中“其他服务业”及“金融业”的生产总值占总生产总值的比重,进而比较出AB选项,利用“住宿和餐饮业”生产总值和“房地产”生产总值的比值,求出“房地产”生产总值,判断出C选项,利用第三产业中“金融业”的生产总值与第二产业的生产总值比值,求出第二产业生产总值,判断D选项.【题目详解】A选项,第三产业中“其他服务业”的生产总值占总生产总值的,因为,所以第三产业中“其他服务业”的生产总值明显高于第一产业的生产总值,A错误;B选项,第三产业中“金融业”的生产总值占总生产总值的,因为,故第一产业的生产总值少于第三产业中“金融业”的生产总值,B错误;“住宿和餐饮业”生产总值和“房地产”生产总值的比值为,若“住宿和餐饮业”生产总值为7500亿元,则“房地产”生产总值为亿元,故C错误;第三产业中“金融业”的生产总值占总生产总值的,与第二产业的生产总值比值为,若“金融业”生产总值为41040亿元,则第二产业生产总值为166500亿元,D正确.故选:D6、B【解题分析】利用充分条件和必要条件的定义判断.【题目详解】解:若,则或,即或,所以是的必要不充分条件故选:B7、A【解题分析】由已知条件列方程组求解即可【题目详解】设等差数列的公差为,因为,,所以,解得,故选:A8、A【解题分析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.9、A【解题分析】求出圆心到直线的距离,然后与圆的半径进行大小比较即可求解.【题目详解】解:圆的圆心,,因为圆心到直线的距离,所以直线与圆的位置关系是相交,故选:A.10、C【解题分析】构造等比数列模型,利用等比数列的前项和公式计算可得结果.【题目详解】由题意可得该屠夫每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此前5天所屠肉的总两数为.故选:C.【题目点拨】本题考查了等比数列模型,考查了等比数列的前项和公式,属于基础题.11、D【解题分析】根据向量的坐标运算和向量垂直数量积为0可解.【题目详解】解:根据题意,易得a→∵与两向量互相垂直,∴0+2+k+2=0,解得.故选:D12、D【解题分析】由于BF⊥x轴,故,设,由得,选D.考点:椭圆的简单性质二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由,可得,,,从而利用换底公式及对数的运算性质即可求解.【题目详解】解:因为,所以,,,又,所以,所以,所以,故答案为:.14、【解题分析】直接利用等差数列前项和公式和等差数列的性质求解即可.【题目详解】由已知条件得,故答案为:.15、【解题分析】根据题意可得,利用推出,进而得出结果.【题目详解】由题意知,,将代入方程中,得,因为,所以,整理,得,又,所以,由,解得.故答案为:16、-.【解题分析】因为,所以,所以,即,又,即,所以数列是首项和公差都为的等差数列,所以,所以考点:数列的递推关系式及等差数列的通项公式【方法点晴】本题主要考查了数列的通项公式、数列的递推关系式的应用、等差数列的通项公式及其性质定知识点的综合应用,解答中得到,,确定数列是首项和公差都为的等差数列是解答的关键,着重考查了学生灵活变形能力和推理与论证能力,平时应注意方法的积累与总结,属于中档试题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析:(2)【解题分析】(1)代入,求导分析函数单调性,再的最小值即可证明.(2),若函数在上存在两个极值点,则在上有根.再分,与,利用函数的零点存在定理讨论导函数的零点即可.【题目详解】(1)证明:当时,,则,当时,,则,又因为,所以当时,,仅时,,所以在上是单调递减,所以,即.(2),因为,所以,①当时,恒成立,所以在上单调递增,没有极值点.②当时,在区间上单调递增,因为.当时,,所以在上单调递减,没有极值点.当时,,所以存在,使当时,时,所以在处取得极小值,为极小值点.综上可知,若函数在上存在极值点,则实数.【题目点拨】本题主要考查了利用导函数求解函数的单调性与最值,进而证明不等式的方法.同时也考查了利用导数分析函数极值点的问题,需要结合零点存在定理求解.属于难题.18、(1)证明见解析;(2)存在,理由见解析.【解题分析】(1)为中点,连接,由中位线、线面平行的性质可得四边形为平行四边形,再根据线面平行的判定即可证结论;(2)取中点N,连接,,根据线面、面面平行的性质定理和判断定理即可判断存在性【小问1详解】如下图,若为中点,连接,由E是PD的中点,所以且,又BC//平面PAD,面,且面面,所以,且,所以四边形为平行四边形,故,而面,面,则面.小问2详解】取中点N,连接,,∵E,N分别为,的中点,∴,∵平面,平面,∴平面,线段存在点N,使得平面,理由如下:由(1)知:平面,又,∴平面平面,又M是上的动点,平面,∴平面PAB,∴线段存在点N,使得MN∥平面19、(1)(2)【解题分析】(1)利用椭圆的定义及勾股定理可求解;(2)问题转化为在轴截距的问题,临界条件为直线与椭圆相切,求解即可.【小问1详解】因为,,所以,∴,所以椭圆标准方程为:【小问2详解】要求的最值,即求直线在轴截距的最值,可知当直线与椭圆相切时,m取得最值.联立方程:,整理得,解得所以实数m的最大值为20、(1)(2)答案见解析【解题分析】(1)由:存在使来求得的取值范围.(2)利用分离常数法,结合导数来求得零点个数.【小问1详解】,在上递增,由于在上不单调,所以存使,,所以.【小问2详解】,令,当时,,构造函数,,所以在递减;在递增,当时,;当时,;.由此画出大致图象如下图所示,所以,当时,有个零点,当时,没有零点,当时,有个零点.21、(1),(2)【解题分析】利用正余弦定理化简即求解A和B的大小利用正弦定理把CN、CM表示出来,结合三角函数的性质,即可求解的面积的最小值【题目详解】解:,由正弦定理得:,,,可得,即;,由由余弦定理可得:,,如图所示:设,,在中由正弦定理,得,由可知,,所以:,同理,由于,故,此时故的面积的最小值为【题目点拨】本题考查了正余弦定理的应用,三角函数的有界限求解最值范围,考查了推理能力与计算能力,属于中档题22、(1),;(2).【解题分析】(1)根据等差数列的通项

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论