广东省广州市第三中学2024年数学高二上期末经典试题含解析_第1页
广东省广州市第三中学2024年数学高二上期末经典试题含解析_第2页
广东省广州市第三中学2024年数学高二上期末经典试题含解析_第3页
广东省广州市第三中学2024年数学高二上期末经典试题含解析_第4页
广东省广州市第三中学2024年数学高二上期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市第三中学2024年数学高二上期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线的一个方向向量为,则直线的倾斜角为()A. B.C. D.2.四棱锥中,底面ABCD是平行四边形,点E为棱PC的中点,若,则等于()A.1 B.C. D.23.2019年湖南等8省公布了高考改革综合方案将采取“”模式即语文、数学、英语必考,考生首先在物理、历史中选择1门,然后在思想政治、地理、化学、生物中选择2门,一名同学随机选择3门功课,则该同学选到历史、地理两门功课的概率为()A. B.C. D.4.在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长的一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺 B.34.5尺C.37.5尺 D.96尺5.在四棱锥中,底面ABCD是正方形,E为PD中点,若,,,则()A. B.C. D.6.已知函数f(x)的定义域为[-1,5],其部分自变量与函数值的对应情况如下表:x-10245f(x)312.513f(x)的导函数的图象如图所示.给出下列四个结论:①f(x)在区间[-1,0]上单调递增;②f(x)有2个极大值点;③f(x)的值域为[1,3];④如果x∈[t,5]时,f(x)的最小值是1,那么t的最大值为4其中,所有正确结论的序号是()A.③ B.①④C.②③ D.③④7.如图,在三棱锥中,是线段的中点,则()A. B.C. D.8.已知点是椭圆上一点,点,则的最小值为A. B.C. D.9.已知实数,满足,则的最大值为()A. B.C. D.10.在三棱锥中,,,,若,,则()A. B.C. D.11.已知函数的导函数的图像如图所示,则下列判断正确的是()A.在区间上,函数增函数 B.在区间上,函数是减函数C.为函数的极小值点 D.2为函数的极大值点12.已知,若与的展开式中的常数项相等,则()A.1 B.3C.6 D.9二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系中,点关于原点的对称点为点,则___________.14.设,,若将函数的图像向左平移个单位能使其图像与原图像重合,则正实数的最小值为___________.15.在平面直角坐标系中,直线与的交点为,以为圆心作圆,圆上的点到轴的最小距离为(Ⅰ)求圆的标准方程;(Ⅱ)过点作圆的切线,求切线的方程16.已知定义在上的偶函数的导函数为,当时,有,且,则使得成立的的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某班名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是、、、.(1)估计该班本次测试的平均分;(2)在、中按分层抽样的方法抽取个数据,再从这个数据中任抽取个,求抽出个中至少有个成绩在中的概率.18.(12分)已知等比数列的公比,,.(1)求数列的通项公式;(2)令,若,求满足条件的最大整数n.19.(12分)如图所示,在四棱锥中,底面是正方形,侧棱底面,,是的中点,过点作交于点.求证:(1)平面;(2)平面.20.(12分)在棱长为的正方体中,、分别为线段、的中点.(1)求平面与平面所成锐二面角的余弦值;(2)求直线到平面的距离.21.(12分)为了保证我国东海油气田海域海上平台的生产安全,海事部门在某平台O的北偏西45°方向km处设立观测点A,在平台O的正东方向12km处设立观测点B,规定经过O、A、B三点的圆以及其内部区域为安全预警区.如图所示:以O为坐标原点,O的正东方向为x轴正方向,建立平面直角坐标系(1)试写出A,B的坐标,并求两个观测点A,B之间的距离;(2)某日经观测发现,在该平台O正南10kmC处,有一艘轮船正以每小时km的速度沿北偏东45°方向行驶,如果航向不变,该轮船是否会进入安全预警区?如果不进入,请说明理由;如果进入,则它在安全警示区内会行驶多长时间?22.(10分)已知向量,,且.(1)求满足上述条件的点M(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m(k≠0)相交于不同的两点P,Q,点A(0,1),当|AP|=|AQ|时,求实数m的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】由直线斜率与方向向量的关系算出斜率,然后可得.【题目详解】记直线的倾斜角为,由题知,又,所以,即.故选:A2、B【解题分析】运用向量的线性运用表示向量,对照系数,求得,代入可得选项.【题目详解】因为,所以,所以,所以,解得,所以,故选:B.3、A【解题分析】先由列举法计算出基本事件的总数,然后再求出该同学选到历史、地理两门功课的基本事件的个数,基本事件个数比即为所求概率.【题目详解】由题意,记物理、历史分别为、,从中选择1门;记思想政治、地理、化学、生物为、、、,从中选择2门;则该同学随机选择3门功课,所包含的基本事件有:,,,,,,,,,,,,共个基本事件;该同学选到历史、地理两门功课所包含的基本事件有:,,共个基本事件;该同学选到物理、地理两门功课的概率为.故选:A.【题目点拨】本题考查求古典概型的概率,属于基础题型.4、A【解题分析】由题意可知,十二个节气其日影长依次成等差数列,设冬至日的日影长为尺,公差为尺,利用等差数列的通项公式,求出,即可求出,从而得到答案【题目详解】设从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{},如冬至日的日影长为尺,设公差为尺.由题可知,所以,,,,故选:A5、C【解题分析】根据向量线性运算法则计算即可.【题目详解】故选:C6、D【解题分析】直接利用函数的导函数的图像,进一步画出函数的图像,进一步利用函数的性质的应用求出函数的单调区间,函数的极值和端点值可得结论【题目详解】解:由f(x)的导函数的图像,画出的图像,如图所示,对于①,在区间上单调递减,所以①错误,对于②,有1个极大值点,2个极小值点,所以②错误,对于③,根据函数的极值和端点值可知的值域为,所以③正确,对于④,如果x∈[t,5]时,由图像可知,当f(x)的最小值是1时,t的最大值为4,所以④正确,故选:D7、A【解题分析】根据给定几何体利用空间向量基底结合向量运算计算作答.【题目详解】在三棱锥中,是线段的中点,所以:.故选:A8、D【解题分析】设,则,.所以当时,的最小值为.故选D.9、A【解题分析】画出不等式组所表示的平面区域,利用直线的斜率公式模型进行求解即可.【题目详解】不等式组表示的平面区域如下图所示:,代数式表示不等式组所表示的平面区域内的点与点连线的斜率,由图象可知:直线的斜率最大,由,即,即的最大值为:,因此的最大值为,故选:A10、B【解题分析】根据空间向量的基本定理及向量的运算法则计算即可得出结果.【题目详解】连接,因为,所以,因为,所以,所以,故选:B11、D【解题分析】根据导函数与原函数的关系可求解.【题目详解】对于A,在区间,,故A不正确;对于B,在区间,,故B不正确;对于C、D,由图可知在区间上单调递增,在区间上单调递减,且,所以为函数的极大值点,故C不正确,D正确.故选:D12、B【解题分析】根据二项展开式的通项公式即可求出【题目详解】的展开式中的常数项为,而的展开式中的常数项为,所以,又,所以故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】先利用关于原点对称的点的坐标特征求出点,再利用空间两点间的距离公式即可求.【题目详解】因为B与关于原点对称,故,所以.故答案为:.14、【解题分析】根据正弦型函数图像平移法则和正弦函数性质进行解题.【题目详解】解:由题意得:函数的图像向左平移个单位后得:该函数与原函数图像重合故可知,即故当时,最小正实数.故答案为:15、(Ⅰ);(Ⅱ)或【解题分析】(Ⅰ)求出点的坐标,设圆的半径为,圆上的点到轴的最小距离为1求得的值,由此可得出圆的标准方程;(Ⅱ)对切线的斜率是否存在进行分类讨论,当切线的斜率不存在时,可得切线方程为,验证即可;当切线的斜率存在时,可设所求切线的方程为,利用圆心到切线的距离等于圆的半径可求得的值,综合可得出所求切线的方程.【题目详解】(Ⅰ)联立方程组,解得,即点设圆的半径为,由于圆上的点到轴的最小距离为,则,所以,故圆的标准方程为;(Ⅱ)若切线的斜率不存在,则所求切线的方程为,圆心到直线的距离为,不合乎题意;若切线的斜率存在,可设切线的方程为,即,圆的圆心坐标为,半径为,由题意可得,整理得,解得或故所求切线方程为或【题目点拨】本题考查圆的标准方程的求解,同时也考查了过圆外一点的圆的切线方程的求解,考查计算能力,属于中等题.16、【解题分析】根据当时,有,令,得到在上递增,再根据在上的偶函数,得到在上是奇函数,则在上递增,然后由,得到求解【题目详解】∵当时,有,令,∴,∴在上递增,又∵在上的偶函数∴,∴在上是奇函数∴在上递增,又∵,∴当时,,此时,0<x<1,当时,,此时,,∴成立的的取值范围是故答案为:﹒三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)将每个矩形底边的中点值乘以对应矩形的面积,再将所得结果全部相加可得的值;(2)分析可知,所抽取的个数据中,成绩在内的有个,分别记为、、、,成绩在内的有个,分别记为、,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由频率分布直方图可得.【小问2详解】解:因为数学成绩在、内的频率分别为、,所以,所抽取的个数据中,成绩在内的有个,分别记为、、、,成绩在内的有个,分别记为、,从这个数据中,任取抽取个,所有的基本事件有:、、、、、、、、、、、、、、,共个,其中,事件“抽出个中至少有个成绩在中”所包含的基本事件有:、、、、、、、、,共个,故所求概率为.18、(1)(2)【解题分析】(1)由等比数列的性质可得,结合条件求出,得出公比,从而得出通项公式.(2)由(1)可得,再求出的前项和,从而可得出答案.【小问1详解】由题意可知,有,,得或∴或又,∴∴【小问2详解】,∴∴,又单调递增,所以满足条件的的最大整数为19、(1)证明见解析;(2)证明见解析.【解题分析】(1)连结、,交于点,连结,通过即可证明;(2)通过,

可证平面,即得,进而通过平面得,结合即证.详解】证明:(1)连结、,交于点,连结,底面正方形,∴是中点,点是的中点,.平面,

平面,∴平面.(2),点是的中点,.底面是正方形,侧棱底面,∴,

,且

,∴平面,∴,又,∴平面,∴,,,平面.【题目点拨】本题考查线面平行和线面垂直的证明,属于基础题.20、(1);(2).【解题分析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得平面与平面所成锐二面角的余弦值;(2)证明出平面,利用空间向量法可求得直线到平面的距离.【小问1详解】解:以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、、,设平面的法向量为,,,由,取,可得,易知平面的一个法向量为,,因此,平面与平面所成锐二面角的余弦值为.【小问2详解】解:,则,所以,,因为平面,所以,平面,,所以,直线到平面的距离为.21、(1);(2)会驶入安全预警区,行驶时长为半小时【解题分析】(1)先求出A,B的坐标,再由距离公式得出A,B之间的距离;(2)由三点的坐标列出方程组得出经过三点的圆的方程,设轮船航线所在的直线为,再由几何法得出直线与圆截得的弦长,进而得出安全警示区内行驶时长.【小问1详解】由题意得,∴;【小问2详解】设圆的方程为,因为该圆经过三点,∴,得到.所以该圆方程为:,化成标准方程为:.设轮船航线所在的直线为,则直线的方程为:,圆心(6,8)到直线的距离,所以直线与圆相交,即轮船会驶入安全预警区.直线与圆截得的弦长为,行驶时长小时.即在安全警示区内行驶时长为半小时.22、(1)+y2=1;(2).【解题分析】(1)应用向量垂直的坐标表示得x2+3y2=3,即可写出M的轨迹C的方程;(2)由直线与曲线C交于不同的两点P(x1,y1),Q(x2,y2),设直线y=kx+m(k≠0),联立方程整理所得方程有,且由根与系数关系用m,k表示x1+x2,x1x2,若N为PQ的中点结合|AP|=|AQ|知PQ⊥AN可得m、k的等量关系,结合即可求m的范围.【题目详解】(1)∵,即,∴,即有x2+3y2=3,即点M(x,y)的轨迹C的方程为+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲线C与直线y=kx+m(k≠0)相交于不同的两点,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论