版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市鲁迅中学2024学年数学高二上期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在正方体中,,则()A. B.C. D.2.已知抛物线的焦点为,点为抛物线上一点,点,则的最小值为()A. B.2C. D.33.某家大型超市近10天的日客流量(单位:千人次)分别为:2.5、2.8、4.4、3.6.下列图形中不利于描述这些数据的是()A.散点图 B.条形图C.茎叶图 D.扇形图4.在x轴与y轴上截距分别为,2的直线的倾斜角为()A.45° B.135°C.90° D.180°5.若复数z满足(其中为虚数单位),则()A. B.C. D.6.曲线为四叶玫瑰线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,苜蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.下列结论正确的个数是()①曲线C关于点(0,0)对称;②曲线C关于直线y=x对称;③曲线C的面积超过4π.A.0 B.1C.2 D.37.已知函数在处取得极值,则()A. B.C. D.8.已知椭圆的右焦点为,则正数的值是()A.3 B.4C.9 D.219.如图是一个程序框图,执行该程序框图,则输出的n值是()A.2 B.3C.4 D.510.在空间直角坐标系中,若,,则()A. B.C. D.11.已知抛物线C:,则过抛物线C的焦点,弦长为整数且不超过2022的直线的条数是()A.4037 B.4044C.2019 D.202212.若数列满足,,则该数列的前2021项的乘积是()A. B.C.2 D.1二、填空题:本题共4小题,每小题5分,共20分。13.某几何体的三视图如图所示,则该几何体的体积为______.14.已知双曲线,则圆的圆心C到双曲线渐近线的距离为______15.已知,用割线逼近切线的方法可以求得___________.16.秦九韶出生于普州(今资阳市安岳县),是我国南宋时期伟大的数学家,他创立的秦九韶算法历来为人称道,其本质是将一个次多项式写成个一次式相组合的形式,如可将写成,由此可得__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为数列的前项和,且(1)求数列的通项公式;(2)若,求数列的前项和(3)设,若不等式对一切恒成立,求实数取值范围18.(12分)某双曲线型自然冷却通风塔的外形是由图1中的双曲线的一部分绕其虚轴所在的直线旋转一周所形成的曲面,如图2所示.双曲线的左、右顶点分别为、.已知该冷却通风塔的最窄处是圆O,其半径为1;上口为圆,其半径为;下口为圆,其半径为;高(即圆与所在平面间的距离)为.(1)求此双曲线的方程;(2)以原平面直角坐标系的基础上,保持原点和x轴、y轴不变,建立空间直角坐标系,如图3所示.在上口圆上任取一点,在下口圆上任取一点.请给出、的值,并求出与的值;(3)在(2)的条件下,是否存在点P、Q,使得P、A、Q三点共线.若不存在,请说明理由;若存在,求出点P、Q的坐标,并证明此时线段PQ上任意一点都在曲面上.19.(12分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点(1)求证:D1F平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值.20.(12分)已知抛物线:上的点到其准线的距离为5.(1)求抛物线的方程;(2)已知为原点,点在抛物线上,若的面积为6,求点的坐标.21.(12分)如图,在长方体中,底面是正方形,O是的中点,(1)证明:(2)求直线与平面所成角的正弦值22.(10分)设等差数列的前项和为,为各项均为正数的等比数列,且,,再从条件①:;②:;③:这三个条件中选择一个作为已知,解答下列问题:(1)求和的通项公式;(2)设,数列的前项和为,求证:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】根据空间向量基本定理,结合空间向量加法的几何意义进行求解即可.【题目详解】因为,而,所以有,故选:A2、D【解题分析】求出抛物线C的准线l的方程,过A作l的垂线段,结合几何意义及抛物线定义即可得解.【题目详解】抛物线的准线l:,显然点A在抛物线C内,过A作AM⊥l于M,交抛物线C于P,如图,在抛物线C上任取不同于点P的点,过作于点N,连PF,AN,,由抛物线定义知,,于是得,即点P是过A作准线l的垂线与抛物线C的交点时,取最小值,所以的最小值为3.故选:D3、A【解题分析】根据数据的特征以及各统计图表的特征分析即可;【题目详解】解:茎叶图、条形图、扇形图均能将数据描述出来,并且能够体现出数据的变化趋势;散点图表示因变量随自变量而变化的大致趋势,故用来描述该超市近10天的日客流量不是很合适;故选:A4、A【解题分析】按照斜率公式计算斜率,即可求得倾斜角.【题目详解】由题意直线过,设直线斜率为,倾斜角为,则,故.故选:A.5、B【解题分析】利用复数的除法化简复数,利用复数的模长公式可求得结果.【题目详解】,因此,.故选:B6、C【解题分析】根据图像或解析式即可判断对称性①②;估算第一象限内图像面积即可判断③.【题目详解】①将点(-x,-y)代入后依然为,故曲线C关于原点对称;②将点(y,x)代入后依然为,故曲线C关于y=x对称;③曲线C在四个象限的图像是完全相同的,不妨只研究第一象限的部分,∵,∴曲线C上离原点最远的点的距离为显然第一象限内曲线C的面积小于以为直径的圆的面积,又∵,∴第一象限内曲线C的面积小于,则曲线C的总面积小于4π.故③错误.故选:C.7、B【解题分析】根据极值点处导函数为零可求解.【题目详解】因为,则,由题意可知.经检验满足题意故选:B8、A【解题分析】由直接可得.【题目详解】由题知,所以,因为,所以.故选:A9、B【解题分析】程序框图中的循环结构,一般需重复计算,根据判断框中的条件,确定何时终止循环,输出结果.【题目详解】初始值:,当时,,进入循环;当时,,进入循环;当时,,终止循环,输出的值为3.故选:B10、B【解题分析】直接利用空间向量的坐标运算求解.【题目详解】解:因为,,所以.故选:B11、A【解题分析】根据已知条件,结合抛物线的性质,先求出过焦点的最短弦长,再结合抛物线的对称性,即可求解【题目详解】∵抛物线C:,即,由抛物线的性质可得,过抛物线焦点中,长度最短的为垂直于y轴的那条弦,则过抛物线C的焦点,长度最短的弦的长为,由抛物线的对称性可得,弦长在5到2022之间的有共有条,故弦长为整数且不超过2022的直线的条数是故选:A12、C【解题分析】先由数列满足,,计算出前5项,可得,且,再利用周期性即可得到答案.【题目详解】因为数列满足,,所以,同理可得,…所以数列每四项重复出现,即,且,而,所以该数列的前2021项的乘积是.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据三视图还原几何体,由此计算出几何体的体积.【题目详解】根据三视图可知,该几何体为如图所示三棱锥,所以该几何体的体积为.故答案为:14、2【解题分析】求出圆心和双曲线的渐近线方程,即得解.【题目详解】解:由题得圆的圆心为,双曲线的渐近线方程为,即.所以圆心到双曲线渐近线的距离为.故答案为:215、【解题分析】根据导数的定义直接计算即可【题目详解】因为,所以,故答案为:16、【解题分析】利用代入法进行求解即可.【题目详解】故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解题分析】(1)利用的关系,根据等比数列的定义求通项公式.(2)由(1)可得,应用裂项相消法求.(3)应用错位相减法求得,由题设有,讨论为奇数、偶数求的取值范围【小问1详解】当时,,可得,当时,,可得,∴是首项、公比都为的等比数列,故.【小问2详解】由(1),,∴.【小问3详解】由题设,,∴,则,∴,由对一切恒成立,令,则,∴数列单调递减,∴当为奇数,恒成立且在上递减,则,当为偶数,恒成立且在上递增,则,综上,.18、(1);(2),,,;(3)存在,或,证明见解析.【解题分析】(1)设双曲线的标准方程为,易知,设,,代入求解即可;(2)分析圆,圆的方程即可求解;(3)利用圆的参数方程,设,,利用,即可求解,再利用线段PQ上任意一点的特征证明点在曲面上;【小问1详解】设双曲线的标准方程为,由题意知,点,的横坐标分别为,,则设点,的坐标为,,,,,解得,,又塔高米,,解得,故所求的双曲线的方程为【小问2详解】点在圆上,;点在圆上,;圆,其半径为,;圆,其半径为,【小问3详解】存在点P、Q,使得P、A、Q三点共线.由点在半径为的圆上,(为参数);点在半径为的圆上,(为参数);由已知得,整理得两式平方求和得,则或当时,,当时,证明:,则,利用,,其中又曲面上的每一点可以是圆与旋转任意坐标系上的双曲线的交点,旋转直角坐标系,保持原点和y轴不变,点所在的轴为轴,此时,满足,即即点是曲面上的点.19、(1)证明见解析;(2).【解题分析】(1)建立空间直角坐标系,利用向量法证得平面.(2)利用向量法求得直线与平面所成角的正弦值.【题目详解】(1)建立如图所示空间直角坐标系.,,设平面的法向量为,则,故可设.由于,所以平面.(2)直线与平面所成角为,则.20、(1)(2)或【解题分析】(1)结合抛物线的定义求得,由此求得抛物线的方程.(2)设,根据三角形的面积列方程,求得的值,进而求得点的坐标.【小问1详解】由抛物线的方程可得其准线方程,依抛物线的性质得,解得.∴抛物线的方程为.【小问2详解】将代入,得.所以,直线的方程为,即.设,则点到直线的距离,又,由题意得,解得或.∴点的坐标是或.21、(1)证明见解析(2)【解题分析】(1)以A为坐标原点,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,令,可得的坐标,再求数量积可得答案;(2)求出平面的法向量、的坐标,由线面角的向量求法可得答案.【小问1详解】在长方体中,以A为坐标原点,的方向分别为x,y,z轴的正方向,建立如图所示的空间直角坐标系不妨令,则,,因为,所以【小问2详解】由(1)可知,,,设平面的法向量,则令,得,设直线与平面所成的角,则.22、(1)an=n,bn=(2)证明见解析【解题分析】(1)设等差数列的公差为d,等比数列的公比为q,q>0,由等差数列和等比数列的通项公式及前n项和公式,列出方程组求解即可得答案;(2)求出,利用裂项相消求和法求出前项和为,即可证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同 仲裁诉讼条款
- 大班音乐绘本《月光长廊》课件
- 2024上海市非定期集装箱道路货物运输合同
- 三年级语文上册第一单元测试卷-基础知识与综合能力篇 含答案 部编版
- 2024家庭水电装修合同书
- 2024收银员聘用合同
- 2024标准销售代理合同格式
- 深圳大学《哲学经典与人生》2021-2022学年第一学期期末试卷
- 深圳大学《形体训练(流行舞蹈)》2022-2023学年第一学期期末试卷
- 合同样本-土建合同范本8篇
- 《共情的力量》课件
- 单词默写表(素材)-2023-2024学年人教PEP版英语五年级上册
- 屠宰行业PEST分析
- JBT 14191-2023 管道带压开孔机 (正式版)
- 肌张力障碍性震颤的护理查房
- 湖北省武汉市江夏区2023-2024学年七年级上学期期中数学试题
- tpm培训学习心得体会
- 果树大棚养护技术方案
- 21我不能失信 说课公开课一等奖创新教案
- 体育学数字化教学设计方案
- 后勤食堂食材供应商考察评价流程
评论
0/150
提交评论