版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省永春一中、培元、季延、石光中学四校2024学年高二数学第一学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某班对期中成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,……,60进行编号,然后从随机数表第9行第5列的数1开始向右读,则选出的第6个个体是()(注:如下为随机数表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.522.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深,平面BDEC是水平面,末端宽,无深,长(直线到的距离),则该羡除的体积为()A. B.C. D.3.已知点,点在抛物线上,过点的直线与直线垂直相交于点,,则的值为()A. B.C. D.4.当时,不等式恒成立,则实数的取值范围为()A. B.C. D.5.圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线l:与椭圆C:相切于点P,椭圆C的焦点为,,由光学性质知直线,与l的夹角相等,则的角平分线所在的直线的方程为()A. B.C. D.6.圆的圆心坐标与半径分别是()A. B.C. D.7.已知数列是各项均为正数的等比数列,若,则公比()A. B.2C.2或 D.48.椭圆的()A.焦点在x轴上,长轴长为2 B.焦点在y轴上,长轴长为2C.焦点在x轴上,长轴长为 D.焦点在y轴上,长轴长为9.已知数列满足:对任意的均有成立,且,,则该数列的前2022项和()A0 B.1C.3 D.410.俗话说“好货不便宜,便宜没好货”,依此判断,“不便宜”是“好货”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件11.已知函数的部分图象与轴交于点,与轴的一个交点为,如图所示,则下列说法错误的是()A. B.的最小正周期为6C.图象关于直线对称 D.在上单调递减12.设是定义在R上的可导函数,若(为常数),则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知在四面体ABCD中,,,则______14.若某几何体的三视图如图所示,则该几何体的体积是__________15.设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=__________.16.若椭圆和圆(c为椭圆的半焦距)有四个不同的交点,则椭圆的离心率的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知抛物线的焦点为F,抛物线C上的点到准线的最小距离为1(1)求抛物线C的方程;(2)过点F作互相垂直的两条直线l1,l2,l1与抛物线C交于A,B两点,l2与抛物线C交于C,D两点,M,N分别为弦AB,CD的中点,求|MF|·|NF|的最小值18.(12分)已知四棱锥的底面是矩形,底面,且,设E、F、G分别为PC、BC、CD的中点,H为EG的中点,如图.(1)求证:平面;(2)求直线FH与平面所成角的大小.19.(12分)已知命题p:函数有零点;命题,(1)若命题p,q均为真命题,求实数a的取值范围;(2)若为真命题,为假命题,求实数a的取值范围20.(12分)2017年厦门金砖会晤期间产生碳排放3095吨.2018年起厦门市政府在下潭尾湿地生态公园通过种植红树林的方式中和会晤期间产生的碳排放,拟用20年时间将碳排放全部吸收,实现“零碳排放”目标,向世界传递低碳,环保办会的积极信号,践行金砖国家倡导的可持续发展精神据研究估算,红树林的年碳吸收量随着林龄每年递增2%,2018年公园已有的红树林年碳吸收量为130吨,如果从2019年起每年新种植红树林若干亩,新种植的红树林当年的年碳吸收量为m()吨.2018年起,红树林的年碳吸收量依次记,,,…(1)①写出一个递推公式,表示与之间的关系;②证明:是等比数列,并求的通项公式;(2)为了提前5年实现厦门会晤“零碳排放”的目标,m的最小值为多少?参考数据:,,21.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,满足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大小;(2)若cosA=,求的值.22.(10分)已知椭圆上的点到焦点的最大距离为3,离心率为.(1)求椭圆的标准方程;(2)设直线与椭圆交于不同两点,与轴交于点,且满足,若,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】从指定位置起依次读两位数码,超出编号的数删除.【题目详解】根据题意,从随机数表第9行第5列的数1开始向右读,依次选出的号码数是:12,34,29,56,07,52;所以第6个个体是52.故选:D.2、C【解题分析】在,上分别取点,,使得,连接,,,把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算【题目详解】如图,在,上分别取点,,使得,连接,,,则三棱柱是斜三棱柱,该羡除的体积三棱柱四棱锥.故选:C【题目点拨】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力3、D【解题分析】由题,由于过抛物线上一点的直线与直线垂直相交于点,可得,又,故,所以的坐标为,由余弦定理可得.故选:D.考点:抛物线的定义、余弦定理【题目点拨】本题主要考查抛物线的定义与性质,考查学生的计算能力,属于中档题4、A【解题分析】设,对实数的取值进行分类讨论,求得,解不等式,综合可得出实数的取值范围.【题目详解】设,其中.①当时,即当时,函数在区间上单调递增,则,解得,此时不存在;②当时,,解得;③当时,即当时,函数在区间上单调递减,则,解得,此时不存在.综上所述,实数的取值范围是.故选:A.5、A【解题分析】先求得点坐标,然后求得的角平分线所在的直线的方程.【题目详解】,直线的斜率为,由于直线,与l的夹角相等,则的角平分线所在的直线的斜率为,所以所求直线方程为.故选:A6、C【解题分析】将圆的一般方程化为标准方程,即可得答案.【题目详解】由题可知,圆的标准方程为,所以圆心为,半径为3,故选.7、B【解题分析】由两式相除即可求公比.【题目详解】设等比数列的公比为q,∵其各项均为正数,故q>0,∵,∴,又∵,∴=4,则q=2.故选:B.8、B【解题分析】把椭圆方程化为标准方程可判断焦点位置和求出长轴长.【题目详解】椭圆化为标准方程为,所以,且,所以椭圆焦点在轴上,,长轴长为.故选:B.9、A【解题分析】根据可知,数列具有周期性,即可解出【题目详解】因为,所以,即,所以数列中的项具有周期性,,由,,依次对赋值可得,,一个周期内项的和为零,而,所以数列的前2022项和故选:A10、A【解题分析】将“好货”与“不便宜”进行相互推理即可求得答案.【题目详解】根据题意,“好货”一定“不便宜”,但是“不便宜”不一定是“好货”,所以“不便宜”是“好货”的必要不充分条件.故选:A.11、D【解题分析】根据函数的图象求出,再利用函数的性质结合周期公式逆推即可求解.【题目详解】因为函数的图象与轴交于点,所以,又,所以,A正确;因为的图象与轴的一个交点为,即,所以,又,解得,所以,所以,求得最小正周期为,B正确;,所以是的一条对称轴,C正确;令,解得,所以函数在,上单调递减,D错误故选:D.12、C【解题分析】根据导数的定义即可求解.【题目详解】.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、24【解题分析】由线段的空间关系有,应用向量数量积的运算律及已知条件即可求.【题目详解】由题设,可得如下四面体示意图,则,又,,所以.故答案为:2414、1【解题分析】根据三视图可得如图所示的几何体,从而可求其体积.【题目详解】据三视图分析知,该几何体为直三棱柱,且底面为直角边为1的等腰直角三角形,高为2,所以其体积故答案为:115、-.【解题分析】因为,所以,所以,即,又,即,所以数列是首项和公差都为的等差数列,所以,所以考点:数列的递推关系式及等差数列的通项公式【方法点晴】本题主要考查了数列的通项公式、数列的递推关系式的应用、等差数列的通项公式及其性质定知识点的综合应用,解答中得到,,确定数列是首项和公差都为的等差数列是解答的关键,着重考查了学生灵活变形能力和推理与论证能力,平时应注意方法的积累与总结,属于中档试题16、【解题分析】当圆的直径介于椭圆长轴和短轴长度范围之间时,椭圆和圆有四个不同的焦点,由此列不等式,解不等式求得椭圆离心率的取值范围.【题目详解】由于椭圆和圆有四个焦点,故圆的直径介于椭圆长轴和短轴长度范围之间,即.由得,两边平方并化简得,即①.由得,两边平方并化简得,解得②.由①②得.故填.【题目点拨】本小题主要考查椭圆和圆的位置关系,考查椭圆离心率取值范围的求法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)8【解题分析】(1)由抛物线C上的点到准线的最小距离为1,所以,即可求得抛物线的方程;(2)设直线AB的斜率为k,则直线CD的斜率为,得到直线AB的方程为,联立方程,求得,进而求得的坐标,得到的表达式,结合基本不等式,即可求解.【小问1详解】解:因为抛物线C上的点到准线的最小距离为1,所以,解得,所以抛物线C的方程为【小问2详解】解:由(1)可知焦点为F(1,0),由已知可得ABCD,所以直线AB,CD的斜率都存在且均不为0,设直线AB斜率为k,则直线CD的斜率为,所以直线AB的方程为,联立方程,消去x得,设点A(x1,y1),B(x2,y2),则,因为M(xM,yM)为弦AB的中点,所以,由,得,所以点,同理可得,所以,=,所以,当且仅当,即时,等号成立,所以的最小值为18、(1)证明见解析(2)【解题分析】(1)连接CH,延长交PD于点K,连接BK,根据E、F、G分别为PC、BC、CD的中点,易得,再利用线面平行的判定定理证明.(2)建立空间直角坐标,求得的坐标,平面PBC一个法向量,代入公式求解.【题目详解】(1)如图所示:连接CH,延长交PD于点K,连接BK,因为设E、F、G分别为PC、BC、CD的中点,所以H为CK的中点,所以,又平面平面,所以平面;(2)建立如图所示直角坐标系则,所以,设平面PBC一个法向量为:,则,有,令,,设直线FH与平面所成角为,所以,因为,所以.【题目点拨】本题主要考查线面平行的判定定理,线面角的向量求法,还考查了转化化归的思想和逻辑推理,运算求解的能力,属于中档题.19、(1);(2).【解题分析】(1)根据二次函数的性质求p为真时a的取值范围,根据的性质判断与有交点求q为真时a的取值范围,进而求p,q均为真时a的取值范围.(2)根据复合命题的真假可得p,q一真一假,讨论p、q的真假分别求a的取值范围,最后取并集即可.【小问1详解】若p为真,,解得或,所以若q为真,因为在上为增函数,所以,故,所以若p,q均为真命题,a的取值范围为【小问2详解】由题设,易知:p,q两命题一真一假当p真q假时,p为真,则或,q为假,则或,此时a的取值范围为;当p假q真时,p为假,则,q为真,则,此时a的取值范围为综上,实数a的取值范围为.20、(1)①;②证明见解析,(2)最少为6.56吨【解题分析】(1)①根据题意直接写出一个递推公式即可;②要证明是等比数列,只要证明为一个常数即可,求出等比数列的通项公式,即可求出的通项公式;(2)记为数列的前n项和,根据题意求出,利用分组求和法求出数列的前n项和,再令,解之即可得出答案.【小问1详解】解:①依题意得,则,②因为,所以,所以,因为所以数列是等比数列,首项是,公比是1.02,所以,所以;【小问2详解】解:记为数列的前n项和,,依题,所以,所以m最少为6.56吨21、(1)(2)【解题分析】(1)利用正弦定理、余弦定理化简已知条件,求得,由此求得.(2)先求得,结合两角差的正弦公式求得.【小问1详解】,,即,,,.【小问2详解】由,可得,.22、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论