2023届七级第二期新世纪外国语学校数学八年级第二学期期末联考试题含解析_第1页
2023届七级第二期新世纪外国语学校数学八年级第二学期期末联考试题含解析_第2页
2023届七级第二期新世纪外国语学校数学八年级第二学期期末联考试题含解析_第3页
2023届七级第二期新世纪外国语学校数学八年级第二学期期末联考试题含解析_第4页
2023届七级第二期新世纪外国语学校数学八年级第二学期期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(

)A.9人 B.10人 C.11人 D.12人2.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是A.每月上网时间不足25h时,选择A方式最省钱 B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱 D.每月上网时间超过70h时,选择C方式最省钱3.在中,,则的值是()A.12 B.8 C.6 D.34.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为,,=0.48,=0.45,则四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁5.如图,一次函数的图象与轴,轴分别交于点,,则的取值范围是()A. B. C. D.6.下列分式的运算中,其中正确的是()A. B.=C.=a+b D.=a57.某中学46名女生体育中考立定跳远成绩如下表:跳远成绩160170180190200210人数3166984这些立定跳远成绩的中位数和众数分别是A.185,170 B.180,170 C.7.5,16 D.185,168.如图,函数和的图象相交于点,则不等式的解集为()A. B. C. D.9.等于()A.±4 B.4 C.﹣4 D.±210.下列计算中,正确的是A. B. C. D.11.如果分式有意义,那么x的取值范围是()A.x≠0 B.x≤﹣3 C.x≥﹣3 D.x≠﹣312.以矩形ABCD两对角线的交点O为原点建立平面直角坐标系,且x轴过BC中点,y轴过CD中点,y=x﹣2与边AB、BC分别交于点E、F,若AB=10,BC=3,则△EBF的面积是()A.4 B.5 C.6 D.7二、填空题(每题4分,共24分)13.如图,在中,连结.且,过点作于点,过点作于点,且,在的延长线上取一点,满足,则_______.14.已知直线y=kx+3经过点A(2,5)和B(m,-2),则m=___________.15.如图,在平面直角坐标系中,有A(﹣3,4)、B(﹣1,0)、C(5,10)三点,连接CB,将线段CB沿y轴正方向平移t个单位长度,得到线段C1B1,当C1A+AB1取最小值时,实数t=_____.16.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为_____m.17.直线与轴、轴的交点分别为、则这条直线的解析式为__________.18.分解因式______.三、解答题(共78分)19.(8分)在平面直角坐标系中,已知一次函数与反比例函数.(1)当在什么样的范围内,直线与曲线必有两个交点.(2)在(1)的情况下,结合图像,当时,请直接写出自变量x的范围(用含字母k的代数式表示).20.(8分)(1);(2)21.(8分)为了让同学们了解自己的体育水平,八年级班的体育老师对全班名学生进行了一次体育模拟测试(得分均为整数),成绩满分为分,班的体育委员根据这次测试成绩,制作了统计图和分析表如下:八年级班全体女生体育测试成绩分布扇形统计图八年级全体男生体育测试成绩条形统计图八年级班体育模拟测试成绩分析表根据以上信息,解答下列问题:(1)这个班共有男生人,共有女生人;(2)补全八年级班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,班的男生队,女生队哪个表现更突出一些?并写出你的看法的理由.22.(10分)如图,平行四边形ABCD中,AB=6cm,BC=10cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)当AE的长是多少时,四边形CEDF是矩形?23.(10分)如图,在平面直角坐标系中,直线的表达式为,点,的坐标分别为,,直线与直线相交于点.(1)求直线的表达式;(2)求点的坐标;24.(10分)先化简,后求值:,其中,x从0、﹣1、﹣2三个数值中适当选取.25.(12分)某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案一的函数图象,y2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少8元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用):(1)求y1的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)小丽应选择哪种销售方案,才能使月工资更多?26.为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?

参考答案一、选择题(每题4分,共48分)1、C【解析】

设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:

x(x-1)=55,

化简得:x2-x-110=0,

解得:x1=11,x2=-10(舍去),

故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.2、D【解析】

A、观察函数图象,可得出:每月上网时间不足25

h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【详解】A、观察函数图象,可知:每月上网时间不足25

h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,yA=kx+b,将(25,30)、(55,120)代入yA=kx+b,得:,解得:,∴yA=3x-45(x≥25),当x=35时,yA=3x-45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,yB=mx+n,将(50,50)、(55,65)代入yB=mx+n,得:,解得:,∴yB=3x-100(x≥50),当x=70时,yB=3x-100=110<120,∴结论D错误.故选D.【点睛】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.3、C【解析】

证明△ABC是等边三角形即可解决问题.【详解】解:∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=BC=6,故选:C.【点睛】本题考查等边三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.4、D【解析】

根据方差的意义进行判断.【详解】解:∵<<<∴四人中成绩最稳定的是丁.故选:D.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5、D【解析】

由函数图像可知y随着x的增大而减小,解不等式即可。【详解】解:由函数图像可知y随着x的增大而减小,∴解得:故选:D.【点睛】本题考查了函数y=kx+b的图像与k值的关系,y随着x的增大而增大,;y随着x的增大而减小,.掌握函数y=kx+b的图像与k值的关系是解题的关键.6、B【解析】

根据分式的运算法则即可求出答案.【详解】解:(A)原式=,故A错误.(B)原式=,故B正确.(C)原式=,故C错误.(D)原式=,故D错误.故选:B.【点睛】本题主要考查了分式化简的知识点,准确的计算是解题的关键.7、B【解析】

根据中位数和众数的定义求解即可.【详解】由上表可得中位数是180,众数是170故答案为:B.【点睛】本题考查了中位数和众数的问题,掌握中位数和众数的定义是解题的关键.8、A【解析】

以交点为分界,结合图象写出不等式的解集即可.【详解】因为点A的坐标为,看函数图象,当的图象在的图像上方时,,此时故选:A.【点睛】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.9、B【解析】

根据=|a|可以得出的答案.【详解】=|﹣4|=4,故选:B.【点睛】本题考查平方根的性质,熟记平方根的性质是解题的关键.10、D【解析】

根据合并同类项法则、同底数幂除法、积的乘方对各选项分析判断后利用排除法求解.【详解】A.应为x3+x3=2x3,故本选项错误;B.应为a6÷a2=a6﹣2=a4,故本选项错误;C.3a与5b不是同类项,不能合并,故本选项错误;D.(﹣ab)3=﹣a3b3,正确.故选D.【点睛】本题考查了合并同类项,同底数幂的除法,积的乘方的性质,熟练掌握运算性质并灵活运用是解题的关键,不是同类项的一定不能合并.11、D【解析】

根据分式有意义的条件可得x+3≠0,再解即可.【详解】由题意得:x+3≠0,解得:x≠3,故选D.12、A【解析】

根据题意得:B(2,﹣),可得E的纵坐标为﹣,F的横坐标为2.代入解析式y=x﹣2可求E,F坐标.则可求△EBF的面积.【详解】解:∵x轴过BC中点,y轴过CD中点,AB=20,BC=3∴B(2,﹣)∴E的纵坐标为﹣,F的横坐标为2.∵y=x﹣2与边AB、BC分别交于点E、F.∴当x=2时,y=.当y=﹣时,x=2.∴E(2,﹣),F(2,)∴BE=4,BF=2∴S△BEF=BE×BF=4故选A.【点睛】本题考查了一次函数图象上点的坐标特征,矩形的性质,关键是找到E,F两点坐标.二、填空题(每题4分,共24分)13、【解析】

根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP.【详解】解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=

,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=AM=1,故答案为1.【点睛】本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.14、-1【解析】

由题意将点A(2,1)和B(m,-2),代入y=kx+3,即可求解得到m的值.【详解】解:∵直线y=kx+3经过点A(2,1)和B(m,-2),∴,解得,∴.故答案为:-1.【点睛】本题考查一次函数图象性质,注意掌握点过一次函数图象即有点坐标满足一次函数解析式.15、【解析】

平移后的点B'(﹣1,t),C'(5,10+t),C1A+AB1取最小值时,A,B',C'三点在一条直线上.【详解】解:将B(﹣1,0)、C(5,10)沿y轴正方向平移t个单位长度,B'(﹣1,t),C'(5,10+t),C1A+AB1取最小值时,A,B',C'三点在一条直线上,∴,∴t=;故答案为;【点睛】考查最短距离问题,平面坐标变换;掌握平面内坐标的平移变换特点,利用三角形中两边之和大于第三边求最短距离是解题的关键.16、2.2【解析】

作出图形,利用定理求出BD长,即可解题.【详解】解:如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25,在Rt△BD中,∠DB=90°,D=2米,BD2+D2=B2,∴BD2+22=6.25,∴BD2=2.25,∵BD0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.【点睛】本题考查了勾股定理的实际应用,属于简单题,利用勾股定理求出BD的长是解题关键.17、y=1x+1.【解析】

把(-1,0)、(0,1)代入y=kx+b得到,然后解方程组可.【详解】解:根据题意得,解得,所以直线的解析式为y=1x+1.故答案为y=1x+1.【点睛】本题考查了待定系数法求一次函数的解析式:设一次函数的解析式为y=kx+b(k、b为常数,k≠0),然后把函数图象上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k、b,从而得到一次函数的解析式.18、(2b+a)(2b-a)【解析】

运用平方差公式进行因式分解:a2-b2=(a+b)(a-b).【详解】(2b+a)(2b-a).故答案为:(2b+a)(2b-a)【点睛】本题考核知识点:因式分解.解题关键点:熟记平方差公式.三、解答题(共78分)19、(1);(2).【解析】

(1)将两个函数关系式消去y,得到关于x的方程,根据根的判别式大于0列出不等式,求出不等式的解集即可得到k的范围;(2)由(1)可求出x的值,再根据k的值进一步求解即可.【详解】(1)(2)由(1)得:若由图像得:若由图像得:【点睛】此题考查了反比例函数与一次函数的交点,熟练掌握待定系数法是解本题的关键.20、(1);(2)-5.【解析】

(1)首先根据立方根、零次幂、负指数幂和绝对值的性质化简,然后计算即可;(2)将二次根式化简,然后应用乘法分配律,进行计算即可.【详解】解:(1)原式;(2)原式.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.21、(1);(2)见解析;(3)见解析。【解析】

(1)根据直方图即可求出男生人数,再用总人数减去男生人数即可得到女生人数.(2)根据平均数与众数的定义即可求解;(3)利用众数的意义即可判断.【详解】解.(1)这个班共有男生有1+2+6+3+5+3=20人,故女生45-20=25人.(2)解:男生的平均分为,女生的众数为,补全表格如下:平均分方差中位数众数男生女生(3)解:(答案不唯一)例如:可根据众数比较得出答案.从众数看,女生队的众数高于男生队的众数,所以女生队表现更突出.【点睛】此题主要考查统计调查的应用,解题的关键是熟知直方图与平均数、众数的性质.22、(1)见解析;(2)时,四边形CEDF是矩形.【解析】

(1)先证明△GED≌△GFC,从而可得GE=GF,再根据对角线互相平分的四边形是平行四边形即可证得结论;(2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:作AP⊥BC于P,则∠APB=90°,求得BP=3cm,再证明△ABP≌△CDE,可得∠CED=∠APB=90°,再根据有一个角是直角的平行四边形是矩形即可得.【详解】(1)四边形ABCD是平行四边形,∴AD//BF,∴∠DEF=∠CFE,∠EDC=∠FCD,∵GD=GC,∴△GED≌△GFC,∴GE=GF,∵GD=GC,GE=GF,∴四边形CEDF是平行四边形;(2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:作AP⊥BC于P,则∠APB=∠APC=90°,∵∠B=60°,∴∠PAB=90°-∠B=30°,∴BP=AB==3cm,四边形ABCD是平行四边形,∴∠CDE=∠B=60°,DC=AB=6cm,AD=BC=10cm,∵AE=7cm,∴DE=AD-AE=3cm=BP,∴△ABP≌△CDE,∴∠CED=∠APB=90°,又∵四边形CEDF是平行四边形,∴平行四边形CEDF是矩形,即当AE=7cm时,四边形CEDF是矩形.【点睛】本题考查了平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.23、(1);(2)【解析】

(1)设直线的表达式为y=kx+b,利用待定系数法即可求出直线的表达式;(2)将直线AB的表达式和直线的表达式联立,解方程即可求出交点P坐标.【详解】解:(1)设直线的表达式为y=kx+b,将点A和点B的坐标代入,得解得:∴直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论