版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.实数的绝对值是()A. B. C. D.12.下列由左到右的变形中,属于因式分解的是()A. B.C. D.3.下列图形中,可以看作是中心对称图形的是()A. B. C. D.4.如图,△ABC三边的长分别为3、4、5,点D、E、F分别是△ABC各边中点,则△DEF的周长和面积分别为()A.6,3 B.6,4 C.6, D.4,65.已知,则的值为()A. B. C.2 D.6.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为()A. B. C. D.7.若二次根式有意义,则x的取值范围为()A.x<1 B.x>1 C.x≤1 D.x≥18.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣49.下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2 C.72cm2 D.108cm210.点A,B,C,D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为()A.点E B.点FC.点H D.点G11.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A. B. C. D.12.方程x2+x﹣1=0的一个根是()A.1﹣5 B.1-52 C.﹣1+5二、填空题(每题4分,共24分)13.反比例函数经过点,则________.14.如图,在ABCD中,对角线AC,BD相交于点O,若再增加一个条件,就可得出ABCD是菱形,则你添加的条件是___________.15.已知,,,,五个数据的方差是.那么,,,,五个数据的方差是______.16.如图,平行四边形的周长为,相交于点,交于点,则的周长为________.17.在平行四边形ABCD中,AE平分交边BC于E,DF平分交边BC于F.若,,则_________.18.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值_____.三、解答题(共78分)19.(8分)如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上.若,,求BF的长.20.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.21.(8分)如图,在平面直角坐标系中,为坐标原点,的三个顶点坐标分别为,,,与关于原点对称.(1)写出点、、的坐标,并在右图中画出;(2)求的面积.22.(10分)已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.23.(10分)某市从今年1月l同起调整居民用水价格,每立方米水费上涨20%.小丽家去年12月份的水费是15元,而今年5月的水费则是10元.已知小丽家今年5月的用水量比去年12月的用水量多5m1.求该市今年居民用水的价格.24.(10分)先化简,再求值:,其中a=1+.25.(12分)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其他任何区别.现将3个小球放入编号为①②③的三个盘子里,规定每个盒子里放一个,且只能放一个小球(1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能情况;(2)求红球恰好被放入②号盒子的概率.26.如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(1)如图(1),求证:AM1+MF1=AF1.
参考答案一、选择题(每题4分,共48分)1、B【解析】
解:|故选B2、D【解析】
根据因式分解的定义,逐个判断即可.【详解】解:A、不属于因式分解,故本选项不符合题意;B、ax2+axy+ax=ax(x+y+1),因式分解错误,故本选项不符合题意;C、m2-2mn+n2=(m-n)2,因式分解错误,故本选项不符合题意;D、属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.3、A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.4、C【解析】分析:利用三角形中位线定理可知:△DEF∽△ABC,根据其相似比即可计算出△DEF的周长和面积.详解:∵点D、E、F分别是△ABC各边中点,∴△DEF∽△ABC,相似比为:.∴△DEF的周长=的周长=.∵△ABC三边的长分别为3、4、5,∴△ABC是直角三角形.∴△DEF的面积=的面积=.故选:C.点睛:本题主要考查了相似三角形.关键在于根据三角形的中位线定理得出两三角形相似,并得出相似比.5、B【解析】试题解析:设=k,则a=2k,b=3k,c=4k.
所以=,
故选B.点睛:已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.6、C【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD故选:C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.7、C【解析】
根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【详解】根据题意,得:1﹣x≥0,解得:x≤1.故选C【点睛】本题考查的知识点为:二次根式的被开方数是非负数.8、A【解析】由题意可得:一次函数y=kx+b中,y<0时,图象在x轴下方,x<5,则关于x的不等式kx+b<0的解集是x<5,故选A.9、D【解析】
根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.【详解】根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F的面积之和为3个G的面积.∵M的面积是61=36cm1,∴A、B、C、D、E、F的面积之和为36×3=108cm1.故选D.【点睛】考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.10、B【解析】
根据位似图形对应点连线过位似中心判断即可.【详解】解:点A、B、C、D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为点F,
故选:B.【点睛】此题考查位似变换,解题关键是弄清位似中心的定义.11、D【解析】
因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴,∴,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.12、D【解析】
利用求根公式解方程,然后对各选项进行判断.【详解】∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=12﹣4×(﹣1)=5,则x=-1±5所以x1=-1+52,x2故选:D.【点睛】本题考查了解一元二次方程﹣公式法,解题关键在于掌握运算法则.二、填空题(每题4分,共24分)13、3【解析】
把点代入即可求出k的值.【详解】解:因为反比例函数经过点,把代入,得.故答案为:3【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14、AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA【解析】根据一组邻边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC或BC=CD或CD=AD或AD=AB;根据对角线互相垂直的平行四边形是菱形可得,添加的条件可以是:AC⊥BD;根据四边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC=CD=DA.故答案是:AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA.15、1【解析】
方差是用来衡量一组数据波动大小的量,每个数都加1所以波动不会变,方差不变.【详解】由题意知,设原数据的平均数为,新数据的每一个数都加了1,则平均数变为+1,
则原来的方差S11=[(x1-)1+(x1-)1+…+(x5-)1]=1,
现在的方差S11=[(x1+1--1)1+(x1+1--1)1+…+(x5+1--1)1]
=[(x1-)1+(x1-)1+…+(x5-)1]=1,
所以方差不变.
故答案为1.【点睛】本题考查了方差,注意:当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.16、1【解析】
根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【详解】解:∵平行四边形ABCD,
∴AD=BC,AB=CD,OA=OC,
∵EO⊥AC,
∴AE=EC,
∵AB+BC+CD+AD=16,
∴AD+DC=1,
∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=1,
故答案为1.【点睛】本题考查了平行四边形性质、线段垂直平分线性质的应用,关键是求出AE=CE,主要培养学生运用性质进行推理的能力,题目较好,难度适中.17、4或9【解析】
首先根据题意画出图形,可知有两种形式,第一种为AE与DF未相交,直接交于BC,第二种为AE与DF相交之后再交于BC.此时根据角平分线的定义和平行四边形的性质找到线段直接的关系.【详解】(1)如图:∵AE平分∠BAD∴∠BAE=∠DAE又∵AD∥BC∴∠DAE=∠BEA即∠BEA=∠BEA∴AB=BE同理可得:DC=FC又∵AB=DC∴BE=CF∵BC=AD=13,EF=5∴BE=FC=(BC-EF)÷2=(13-5)÷2=4即AB=BE=4(2)∵AE平分∠BAD∴∠BAE=∠DAE又∵AD∥BC∴∠DAE=∠BEA即∠BEA=∠BEA∴AB=BE同理可得:DC=FC又∵AB=DC∴BE=CF则BE-EF=CE-EF即BF=CE而BC=AD=13,EF=5∴BF=CE=(BC-EF)÷2=(13-5)÷2=4∴BE=BF+EF=4+5=9故AB=BE=9综上所述:AB=4或9【点睛】本题解题关键在于,根据题意画出图形,务必考虑多种情况,不要出现漏解的情况.运用到的知识点有:角平分线的定义与平行四边形的性质.18、1.【解析】
根据a+b=3,ab=2,应用提取公因式法,以及完全平方公式,求出代数式a3b+2a2b2+ab3的值是多少即可.【详解】∵a+b=3,ab=2,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=2×32=1故答案为:1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题(共78分)19、1.【解析】
先求出BC′,再由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.【详解】解:∵将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上
∴BC'=AB=3,CF=C'F
在Rt△BC'F中,C'F2=BF2+C'B2,
∴CF2=(9-CF)2+9
∴CF=5
∴BF=1.【点睛】本题考查折叠问题及勾股定理的应用,同时也考查了列方程求解的能力.解题的关键是找出线段的关系.20、(1)证明见解析;(2)1.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×1×2=1,故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.21、(1)、、,作图见解析;(2)6【解析】
(1)利用关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用三角形面积公式计算.【详解】解:(1)如图,△A1B1C1为所作,∴、、;(2);【点睛】本题考查三角形的面积计算,难度不大,解决本题的关键是正确掌握关于原点对称的点的坐标的特点.22、m=-1【解析】
根据一次函数的定义得到方程和不等式,再进行求解即可.【详解】解:若关于x的函数y=(m+3)x|m+2|是正比例函数,需满足m+3≠0且|m+2|=1,解得m=-1故m的值为-1.23、该市今年居民用水的价格是每立方米2.4元.【解析】
利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m1,进而得出等式即可.【详解】设去年居民用水价格为x元/m1,根据题意列方程:,解得:x=2,经检验:x=2是原方程的根,∴(1+20%)x=2.4,答:该市今年居民用水的价格是每立方米2.4元.【点睛】本题考查了分式方程的应用,应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年益阳道路运输从业资格证考试
- 合作医疗宣传
- 2024年度技术服务与升级合同
- 2024年度煤矿火灾防治及应急处理合同
- 2024年度企业员工培训与人才租赁合同
- 2024年仓储货物进出口贸易合同
- 2024年度智能制造生产线设备购销合同
- 2024年度技术服务合同:云计算平台建设与维护
- 2024年度婚礼主持及表演服务合同
- 2024年度文化艺术作品复制权许可合同
- 2024年中国光学太阳镜片市场调查研究报告
- 广东省广州市四校2024-2025学年九年级上学期11月期中化学试题(含答案)
- 2024-2030年中国体外培育牛黄行业市场竞争格局及投资价值分析报告
- 浙江省杭州市2023-2024学年高二上学期期末学业水平测试政治试题 含解析
- 2024-2025学年八年级上学期地理期中模拟试卷(人教版+含答案解析)
- (5篇)国开2024年秋形策大作业:中华民族现代文明有哪些鲜明特质?建设中华民族现代文明的路径是什么
- 安全生产三个体系
- 研发物料管理制度
- 2024年中国木材链市场调查研究报告
- 《2023版CSCO鼻咽癌诊疗指南》解读课件
- 民航飞行员技能大赛理论考试题库600题(含答案)
评论
0/150
提交评论