版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列方程中,是分式方程的为()A. B. C. D.2.如图,在△ABC中,∠ACB=90°,CE⊥AB,垂足为E,点D是边AB的中点,AB=20,S△CAD=30,则DE的长度是()A.6 B.8 C. D.93.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.1,4,3.1,1,1,3.1.这组数据的众数是()A.3 B.3.1 C.4 D.14.若y=(m﹣2)x+(m2﹣4)是正比例函数,则m的取值是()A.2 B.﹣2 C.±2 D.任意实数5.如图,在正方形中,是上的一点,且,则的度数是()A. B. C. D.6.如图,一次函数y=kx+b的图象经过点A(1,0),B(2,1),当因变量y>0时,自变量x的取值范围是()A.x>0 B.x<0 C.x>1 D.x<17.如图所示,直角三角形ABO的周长为100,在其内部有个小直角三角形周长之和为()A.90 B.100 C.110 D.1208.如图,在平面直角坐标系中,正方形OBCD的顶点O在坐标原点,点B的坐标为(2,5),点A在第二象限,反比例函数的图象经过点A,则k的值是()A. B. C. D.9.下列各组数据中,能作为直角三角形三边长的是()A.4,5,6 B.5,12,13 C.6,7,8 D.8,9,1010.如图,正方形ABCD中,点E、F、H分别足AB、BC,CD的中点,CE、DF交于G,连接AG、HG.下列论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=12CEA.1个 B.2个 C.3个 D.4个11.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.7 B.8 C.9 D.1012.如图,在中,,,,点为斜边上一动点,过点作于,于点,连结,则线段的最小值为()A. B. C. D.二、填空题(每题4分,共24分)13.若是一个完全平方式,则的值等于_________.14.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为___cm.15.一组数据1,2,a,4,5的平均数是3,则这组数据的方差为_____.16.当m=_____时,x2+2(m﹣3)x+25是完全平方式.17.如图,在直角坐标系中,A、B两点的坐标分别为(0,8)和(6,0),将一根橡皮筋两端固定在A、B两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形AOBC,则橡皮筋被拉长了_____个单位长度.18.在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________三、解答题(共78分)19.(8分)如图,在中,,,为边上的高,过点作,过点作,与交于点,与交于点,连结.(1)求证:四边形是矩形;(2)求四边形的周长.20.(8分)已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量.21.(8分)已知如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,A点坐标是(﹣2,1),B点坐标(1,n);(1)求出k,b,m,n的值;(2)求△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值的x的取值范围.22.(10分)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E,F.(1)若CE=4,CF=3,求OC的长.(2)连接AE、AF,问当点O在边AC上运动到什么位置时,四边形AECF是矩形?请说明理由.23.(10分)如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.(1)求证:四边形AECF是菱形(2)若AB=6,BC=10,F为BC中点,求四边形AECF的面积24.(10分)解方程:(1);(2).25.(12分)(1)因式分解:m3n-9mn;(2)解不等式组:.26.如图,菱形的对角线相交于点,,,相交于点.求证:四边形是矩形.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】A.是整式方程,故选项错误;B.是整式方程,故选项错误;C.分母中含有未知数x,所以是分式方程,故选项正确;D.是整式方程,故选项错误.故选C.【点睛】此题考查分式方程的判定,掌握分式方程的定义是解题的关键.2、B【解析】
根据直角三角形斜边中线的性质求得CD,根据三角形面积求得CE,然后根据勾股定理即可求得DE.【详解】解:∵在△ABC中,∠ACB=90°,点D是边AB的中点,AB=20,
∴CD=AD=BD=10,
∵S△CAD=30,CE⊥AB,垂足为E,
∴S△CAD=AD•CE=30
∴CE=6,
∴DE=故选B.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,解题的关键是掌握这个性质的运用.3、B【解析】试题分析:在这一组数据中3.1出现了3次,次数最多,故众数是3.1.故选B.考点:众数.4、B【解析】
正比例函数的一般式y=kx,k≠0,所以使m2-4=0,m-2≠0即可得解.【详解】由正比例函数的定义可得:m2-4=0,且m-2≠0,解得,m=-2;故选B.5、B【解析】
在正方形中可知∠BAC=45°,由AB=AE,进而求出∠ABE,又知∠ABE+∠EBC=90°,故能求出∠EBC.【详解】解:在正方形ABCD中,∠BAC=45°,∵AB=AE,∴∠ABE=∠AEB=67.5°,∵∠ABE+∠EBC=90°,∴∠EBC=22.5°,故选B.【点睛】本题主要考查正方形的性质,等腰三角形的性质等知识点,熟练掌握基础知识是解题关键.6、C【解析】
由一次函数图象与x轴的交点坐标结合函数图象,即可得出:当x>1时,y>1,此题得解.【详解】解:观察函数图象,可知:当x>1时,y>1.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数的图象以及一次函数的性质,观察函数图象,利用数形结合解决问题是解题的关键.7、B【解析】过小直角三角形的直角定点作AO,BO的平行线,则四边形DEFG和四边形EFOH是矩形.∴DE=GF,DG=EF=OH,∴小直角三角形的与AO平行的边的和等于AO,与BO平行的边的和等于BO.∴小直角三角形的周长等于直角△ABC的周长.∴这n个小直角三角形的周长为1.故选B.8、D【解析】
作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,−x),根据正方形的性质求得对角线解得F的坐标,即可得出,解方程组求得k的值.【详解】作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90,∴∠AOD+∠COE=90,∵∠AOD+∠OAD=90,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,−x),∵AC和OB互相垂直平分,点B的坐标为(2,5),∴它们的交点F的坐标为(1,),∴,解得,∴k=−=,故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,三角形求得的判定和性质,熟练掌握正方形的性质是解题的关键.9、B【解析】
欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A、∵42+52=41≠62,∴不能作为直角三角形三边长,故本选项错误;B、∵52+122=169=132,∴能作为直角三角形三边长,故本选项正确;C、∵62+72=85≠82,∴不能作为直角三角形三边长,故本选项错误;D、∵82+92=141≠102,∴不能作为直角三角形三边长,故本选项错误.故选B.【点睛】本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.10、C【解析】
连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,易证得CE⊥DF与AH⊥DF,根据垂直平分线的性质,即可证得AG=AD,由直角三角形斜边上的中线等于斜边的一半,即可证得HG=12AD,根据等腰三角形的性质,即可得∠CHG=∠DAG【详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E、F、H分别是AB、BC、CD的中点,∴BE=CF,在△BCE与△CDF中,BE=CF∴△BCE≌△CDF(SAS),∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;在Rt△CGD中,H是CD边的中点,∴HG=12CD=12连接AH,如图:同理可证得:AH⊥DF,∵HG=HD=12CD∴DK=GK,∴AH垂直平分DG,∴AG=AD,GH=DH,故②正确;∴∠DAG=2∠DAH,在△ADH与△CDF中,DH=CF∠ADH=∠DCF∴△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,又∵AH垂直平分DG,∴∠DAH=∠GAH,∠DAG=2∠DAH,∴∠CHG=∠DAG.故③正确;故选:C.【点睛】此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.11、B【解析】
先利用中点的定义求得AC的长,然后运用勾股定理即可快速作答.【详解】解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=1.在直角△ACD中,∠ADC=90°,AD=6,AC=1,则根据勾股定理,得CD==8故答案为B;【点睛】考查勾股定理时,条件常常不是完全具备,需要挖掘隐含条件,才能正确的使用勾股定理.本题还考查了直角三角形斜边上的中线长度等于斜边的一半.12、C【解析】
连接PC,先证明四边形ECFP是矩形,从而得EF=PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【详解】连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=1,BC=6,∴AB=10,∴PC的最小值为:=4.1.∴线段EF长的最小值为4.1.故选C.【点睛】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.二、填空题(每题4分,共24分)13、【解析】
根据完全平方公式的特点即可求解.【详解】∵是完全平方式,即为,∴.故答案为.【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点.14、6【解析】
∵l垂直平分BC,∴DB=DC.∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm15、1【解析】由平均数的公式得:(51+1+x+4+5)÷5=3,
解得x=3;
∴方差=[(1-3)1+(1-3)1+(4-3)1+(3-3)1+(5-3)1]÷5=1;故答案是:1.16、8或﹣1【解析】
先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】解:∵x1+1(m﹣3)x+15=x1+1(m﹣3)x+51,∴1(m﹣3)x=±1×5x,m﹣3=5或m﹣3=﹣5,解得m=8或m=﹣1.故答案为:8或﹣1.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.17、1【解析】
根据已知条件得到OA=8,OB=6,根据勾股定理得到,根据矩形的性质即可得到结论.【详解】解:∵A、B两点的坐标分别为(0,8)和(6,0),∴OA=8,OB=6,∴,∵四边形AOBC是矩形,∴AC+BC=OB+OA=11,∴11﹣10=1,∴橡皮筋被拉长了1个单位长度,故答案为:1.【点睛】本题考查了矩形的性质,坐标与图形性质,熟练掌握矩形的性质是解题的关键.18、20或22【解析】
根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.【详解】根据题意可得矩形的长为7当形成的直角等腰三角形的直角边为3时,则矩形的宽为3当形成的直角等腰三角形的直角边为4时,则矩形的宽为4矩形的宽为3或4周长为或故答案为20或22【点睛】本题主要考查等腰直角三角形的性质,关键在于确定宽的长.三、解答题(共78分)19、(1)见详解;(2)【解析】
(1)利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.(2)在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得BD的长度,即可得出结果.【详解】(1)证明:∵AE∥BC,DE∥AC,∴四边形AEDC是平行四边形.∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD.∴BD=AE.∴四边形AEBD是矩形.(2)解:在Rt△ADC中,∠ADB=90°,AC=9,BD=CD=BC=3,∴AD=.∴四边形AEBD的周长=.【点睛】本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.20、(1)y=6x﹣100;(2)1吨【解析】
(1)设y关于x的函数关系式y=kx+b,然后利用待定系数法求一次函数解析式解答;(2)把水费620元代入函数关系式解方程即可.【详解】(1)设y关于x的函数关系式y=kx+b,则:解得:,所以,y关于x的函数关系式是y=6x﹣100;(2)由图可知,当y=620时,x>50,所以,6x﹣100=620,解得:x=1.答:该企业2018年10月份的用水量为1吨.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.21、(1)k=﹣1,b=﹣1,m=﹣2,n=﹣2;(2)S△AOB=;(3)x<﹣2或0<x<1【解析】
(1)将点A,点B坐标代入两个解析式可求k,b,m,n的值;(2)由题意可求点C坐标,根据△AOB的面积=△ACO面积+△BOC面积,可求△AOB的面积;(3)根据一次函数图象在反比例图象的上方,可求x的取值范围【详解】解:(1)∵反比例函数y=的图象过点A(﹣2,1),B(1,n)∴m=﹣2×1=﹣2,m=1×n∴n=﹣2∴B(1,﹣2)∵一次函数y=kx+b的图象过点A,点B∴解得:k=﹣1,b=﹣1∴直线解析式y=﹣x﹣1(2)∵直线解析式y=﹣x﹣1与x轴交于点C∴点C(﹣1,0)∴S△AOB=×1×1+×1×2=(3)由图象可得:x<﹣2或0<x<1【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.22、(1)2.5:(2)见解析.【解析】
(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可.【详解】(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵EF∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==5,∴OC=OE=EF=2.5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【点睛】本题考查了矩形的判定、平行线的性质、等腰三角形的判定与性质,掌握这些判定及性质是解答本题的关键.23、(1)详见解析;(2)2【解析】
(1)根据对角线互相垂直的平行四边形是菱形证明即可;(2)由菱形的性质得到AO=CO,即可得到OF为△AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 图案形态课件教学课件
- 第二章 相互作用-力的合成与分解 2025年高考物理基础专项复习
- 5.2 课时2 共价键 分子间作用力 课件 高一上学期化学苏教版(2019)必修第一册
- 3.3盐类的水解 第一课时 课件高二上学期化学人教版(2019)选择性必修1
- 糖尿病与感染综合管理
- 糖尿病足换药技术
- 医药总监年度规划
- 白血病病人的护理讲课
- 超市教案反思
- 比较轻重中班教案反思
- 八年级语文期中考试成绩分析及教学反思(3篇)
- 电工操作证考试题库电工基础知识题库
- 养殖水环境化学全套教学课件
- 人教版六年级下册Unit 4 Then and now单元整体作业设计
- 我国竞技体育后备人才培养现状与对策
- 2023年12月广西物流职业技术学院招考聘用106人笔试近6年高频考题难、易错点荟萃答案带详解附后
- 英语专业职业生涯规划
- 健身指导与管理职业生涯规划书
- 2024年银行考试-建设银行纪检监察条线笔试历年真题荟萃含答案
- 2023医保药品目录
- 工业互联网职业规划
评论
0/150
提交评论