版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
word文档精品文档分享:典型计算题一1、某地区销售某种商品的价格和销售量资料如下:商品规格销售价格各组商品销售量占总销售量的比重〔元〕〔%〕20---3020甲5030---4040---5030乙丙根据资料计算三种规格商品的平均销售价格。解:销售价格组中值比重〔%〕商品规格xf/f〔元〕〔X〕f/f20---3025205.0甲355017.530---4040---50453013.5乙丙----10036.0合计fxx36(元)f点评:第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格。第二,所给资料是组距数列,因此需计算出组中值。word文档精品文档分享采用加权算术平均数计算平均价格。第三,此题所给的是比重权数,因此需采用以比重形式word文档精品文档分享表示的加权算术平均数公式计算。2、某企业 1992年产值方案是 1991年的105%,1992年实际产值是1991的的116%,问1992年产值方案完成程度是多少?解:方案完成程度实际相对数116%。即1992年方案完成程度为方案相对数105%110%110%,超额完成方案10%。点评:此题中的方案任务和实际完XX是“含基数〞百分数,所以可以直接代入根本公式计算。3、某企业1992年单位本钱方案是 1991年的95%,实际单位本钱是1991年的90%,问1992年单位本钱方案完成程度是多少?解:实际相对数90%方案完成程度94.74%。即92年单位本钱方案完成程度是方案相对数95%94.74%,超额完成方案5.26%。点评:此题是“含基数〞的相对数,直接套用公式计算方案完成程度。4、某企业1992年产值方案比 91年增长5%,实际增长 16%,问1992年产值方案完成程度是多少?解:116%方案完成程度110%15%点评:这是“不含基数〞的相对数计算方案完成程度,应先将“不含基数〞的相对数复原成“含基数〞的相对数,才能进展计算。word文档精品文档分享5、某企业1992年单位本钱方案比 1991年降低5%,实际降低 10%,问1992年单位成word文档精品文档分享本降低方案完成程度是多少?解:110%方案完成程度94.74%15%点评:这是“不含基数〞的相对数计算方案完成程度,应先将“不含基数〞的相对数复原成“含基数〞的相对数,才能进展计算。6、某企业产值方案完成 103%,比上期增长 5%,问产值方案规定比上期增加多少?解:103%=105%÷〔1+x〕x=1.9%即产值方案规定比上期增加1.9%.点评:方案完成程度=103%,实际完成相对数 =105%,设产值方案规定比上期增加x,那么方案任务相对数=1+x,根据根本关系推算出x.7、某煤矿某月方案任务为5400吨,各旬方案任务是均衡安排的,根据资料分析本月生产情况.方案数(吨)实际数(吨)方案完成程度%上旬1800122568.06中旬1800172095.56下06合计51005610104解:从资料看,尽管超额完成了全期方案(=104%),但在节奏性方面把握不好。上旬仅完成方案68.06%,下旬完成方案148.06%,存在明显着前松后紧现象,在下一阶段工作安word文档精品文档分享排中应当注意这一问题.word文档精品文档分享点评:对于短期方案完成情况检查时,除了同期的方案数与实际数比照,以点评月度方案执行的结果外,还可用方案期中某一阶段实际累计数与全期方案数比照,用以点评方案执行的节奏性和均衡性,为下一阶段工作安排作准备。8、某地区全民所有制固定资产投资完成资料如下:198619871988198919901990年1季2季3季固定资产投资68839510529302830该地区“七五〞时期方案固定资产投资410亿元。试计算全期方案完成程度和方案提前完成时间。解:方案任务410亿元是五年固定资产投资总额,用累计法计算检查:全期实际完成累计方案完成程度全期方案任务累计%从方案规定的第一年起累计到第五年的第二季度已到达410亿元,提前两个季度完成方案。9、某产品按五年方案规定,最后一年产量应到达以54万吨,方案完成情况如下:第第第三年第四年第五年上下一二一二三四一二三四半半年年季季季季季季季季年年产量404320241111121313141415〔单位:万吨〕试计算产量方案完成程度和方案提前完成时间。解:方案规定了最后一年应到达的水平,用水平法检查。实际最末水平%方案完成程度方案最末水平.%从第四年的第四季度起累计至第五年的第三季度,在连续12个月内刚好完成产量54word文档精品文档分享万吨,故提前一个季度完成方案任务word文档精品文档分享10、某班40名学生统计成绩分组资料如下,试计算全班的平均成绩。成绩组中值x学生数60分以下50560—80702580以上9010合计—40解:全班总成绩平均成绩=,即全班总人数xfx=.(分)f点评:先计算出组距式分组数列的组中值。此题掌握各组平均成绩和对应的学生数资料〔频数〕,掌握被平均标志值x及频数、频率、用加权平均数计算。11、第一组工人的工龄是 6年,第二组工人的工龄是 8年,第三组工人的工龄是10年,第一组工人占三组工人总数的30%,第二组占三组工人总数和的50%,试计算三组工人的平均工龄。解:xxf=6×30%+8×50%+10×20%=7.8(年)ff点评:现掌握各组工龄及各组工人所占比重〔频率〕权数,因此需采用以比重f形式表示的加权算术平均数公式计算。12、某班学生统计学原理成绩分组资料如下,试计算全班的平均成绩。word文档精品文档分享成绩组中值x各组总成绩word文档精品文档分享60分以下5025060—8070175080以上90900合计——2900解:全班平均成绩xm.(分)mx点评:掌握被平均标志值〔x〕及各组标志总量〔m〕,用加权调和平均法计算。13、某工业公司 12个企业方案完成程度分组资料如下按产值方案完成分组%组中值%企业数实际产值(万元)90-1009521200100-110105712800110-12011532000试计算该公司平均方案完成程度指标.解:xm.%mx%%%点评:这是一个相对数计算平均数的问题.首先涉及到权数的选择问题。我们假设以企业数为权数,那么平均方案完成程度:xf%%%x.%f实际完成数以上算法显然不符合方案完成程度的计算公式.因为方案完成程度=,即影响计方案任务数word文档精品文档分享划完成程度的直接因素应是企业的实际完成数和企业的方案任务数,以实际完成数或方案任务数作权数是比拟适宜的;其次涉及到平均方法的选择问题,本例掌握实际完成数,即掌握所要平均的变量的分子资料,故用加权调和平均数法计算.word文档精品文档分享在选择权数时必须考虑两点:一是它是标志值的直接承当者;二是它与标志值相乘具有意义,能构成标志总量.14、1990年某月份甲乙两市场某产品价格及成交量、成交额资料如下:品种价格〔元/斤〕甲市场成交额〔万元〕乙市场成效量〔万斤〕甲1.21.22乙1.42.81丙1.51.51合计-5.54试问该产品哪一个市场的平均价格高,并点评原因.解:甲市场平均价格m.../斤)x..(元m..x...乙市场平均价格xf....(元斤=/)f甲市场的平均价格于高乙市场.点评:在比照分析平均水平的上下变化时,必须考虑权数比重变化的影响.权数对总体平均数的影响规律是:当标志值大对应的权数比重也大时,总体平均数偏高 ;当标志值小对应的权数比重大时,总体平均数偏低.甲市场价格较高的乙品种成交量占总成交量的50%,价格最高的丙品种和价格最低的甲品种各占成交总量的25%;乙市场价格最低的甲品种成交量占总成交量的50%,价格较高的乙word文档精品文档分享品种和价格最高的丙品种成交量各占总成量的25%,因此,甲市场总平均价格偏高,乙市场平word文档精品文档分享均价格偏低.15、根据资料可以看出,各类职员中女性录取率均高于男性组,而女性总平均录取率(17.8%)却低于男性(20.5%),为什么?男性女性报考比重%录取录取报考比重%录取录取人类人类率%人类人类率%35058702050102040技工200335025150304530教师5093630060248医生60010012320.55001008917.8合计解:男性的总平均录取率之所以高于女性,是因为录取率高的技工和教师类报考人数占总报考人数的91%(),而录取率低的医生类报考人数仅占9%,从而使总体平均数偏高 ;女性录取率高的技工和教师类报考人数占总人数的40%,录取率低的医生类报考人数占总人数60%,从而使总体平均数低低.点评:在比照分析平均水平的上下变化时,必须考虑权数比重变化的影响.权数对总体平均数的影响规律是:当标志值大对应的权数比重也大时,总体平均数偏高 ;当标志值小对应的权数比重大时,总体平均数偏低.16、有两企业工人日产量资料如下:平均日产量(件)标准差(件)173甲企业26.13.3乙企业word文档精品文档分享试比拟哪个企业的工人平均日产量更具代表性?word文档精品文档分享解:甲.%v甲x甲乙.%v乙.x乙.可见,乙企业的平均日产量更具有代表性.点评:这显然是两组水平不同的现象总体,不能直接用标准差的大小点评平均水平的代表性,必须计算标准差系数.17、有两个班参加统计学考试,甲班的平均分数75分,标准差11.5分,乙班的考试成绩资料如下:按成绩分组〔分〕学生人数〔人〕60以下260-70570-80880-90690-1004合计25要求:〔1〕计算乙班的平均分数和标准差;〔2〕比拟哪个班的平均分数更有代表性。解:〔1〕乙班平均成绩xxf1925f77〔分〕25〔2〕(xx)2f3400f11.66〔分〕25word文档精品文档分享11.5x7515.33%11.6615.14%word文档精品文档分享x77甲组的标准差系数大于乙组的标准差系数,所以乙组平均成绩的代表性比甲组大。word文档精品文档分享18、进展简单随机重复抽样,假定抽样单位增加3倍,那么抽样平均误差将发生如何变化?word文档精品文档分享如果要求抽样误差X围减少20%,其样本单位数应如何调整?解:〔1)在样本单位数是n时,平均抽样误差uxpp或up;样本nn单位数是4n(注意:增加3倍即n+3n=4n)时,μ=?x1μ=xx1nn2241680%xx25525n.〔5分〕抽样单位数增加3倍,抽样平均误差是原来的二分之一倍n16(2)平均误差是80%时(注意:降低20%即100%25μx-20%μx=80%μx)n=?平均误差降低 20%抽样单位数增加为原来的n倍162n、从一批产品中按简单随机重复抽样方式抽取50包检查,结果如下:192word文档精品文档分享x2225n数每1包重量〔克〕包421621690-95225xx595-100322xn16word文档精品文档分享100-10535105-11010要求:以95.45%的概率〔t=2〕估计该批产品平均每包重量的X围。word文档精品文档分享解:xxff5140102.8〔克〕(3分)50(xx)2f520.5f3.32〔克〕(2分)50word文档精品文档分享x3.32=0.46(4分)△x=tx=2×0.46=0.92(2分)n50word文档精品文档分享该批产品平均每包重量的区间X围是:x-△x≤X≤x+△x(2分)102.8-0.92≤X≤102.8+0.92 101.88≤X≤103.72(2分)20、某工厂生产一种新型灯泡5000只,随机抽取100只作耐用时间试验。测试结果,word文档精品文档分享平均寿命为 4500小时,标准差 300小时,试在90%概率保证下,估计该新式灯泡平均寿命word文档精品文档分享区间;假定概率保证程度提高到95%,允许误差缩小一半,试问应抽取多少只灯泡进展测试?解:N=5000 n=100x=4500=300F〔t〕=90%t=1.64word文档精品文档分享抽样平均误差xn30010011=29.7nN1005000word文档精品文档分享允许误差x tx=1.64×29.7=49平均使用寿命的区间下限=xx=4500-49=4451〔小时〕上限=xx4500+49=4549〔小时〕当F〔t〕=95%〔t=1.96〕、x=49/2=24.5时nNt2250001.9623002=516〔只〕2t22500024.521.9623002NX21、调查一批机械零件合格率。根据过去的资料,合格品率曾有过99%、97%、和95%三种情况,现在要求误差不超过 1%,要求估计的把握程度为95%,问需要抽查多少个零件?解:根据提供的三种合格率,总体方差取大值计算,故用P=95%,F〔t〕=0.95t=1.96t2p(1p)1.9620.95(10.95)1825(件〕n2p0.012约需抽查1825个零件。22、某单位按简单随机重复抽样方式抽取40名职工,对其业务情况进展考核,考核成绩资料如下:68898884868775737268758299588154797695767160916576727685899264578381787772617087要求:〔1〕根据上述资料按成绩分成以下几组:60分以下,60-70分,70-80分,80-90word文档精品文档分享分,90-100分,并根据分组整理成变量分配数列;〔2〕根据整理后的变量数列,以95.45%的概率保证程度推断全体职工业务考试成绩的区间X围;〔3〕假设其它条件不变,将允许误差X围缩小一半,应抽取多少名职工?解:〔1〕根据抽样结果和要求整理成如下分布数列:名职工考试成绩分布考试成绩〔分〕职工人数〔人〕比重〔%〕60以下37.560-7061570-801537.580-90123090-100410合计40100〔1〕根据次数分配数列计算样本平均数和标准差fxx=55×7.5%+65×15%+75×37.5%+85×30%+95.5×10%=77〔分〕f(xx)2f4440分〕f10.54(40x10.541.6740nxtx21.673.34全体职工考试成绩区间X围是:下限=xx773.3473.66(分〕上限=x773.34〔分〕x80.3word文档精品文档分享即全体职工考试成绩区间X围在73.66—80.3分之间。〔3〕nt22210.5422(3.34)2159〔人〕x223、在4000件成品中,按重复抽样方式抽取200件产品进展检查,其中有废品8件。当概率是0.9545时,试估计这批产品的废品量X围。解:N=4000n=200t=280.04p200p(1p)0.040.96P0.0139n200ptp2 0.01390.0278p pp0.04 0.0278即1.22%-6.78%该批产品的废品量X围为40001.22% 40006.78%即48.8-271件24、某地区1991-1995年个人消费支出和收入资料如下:年份19911992199319941995个人收入〔万元〕6470778292消费支出〔亿元〕5660667588要求:〔1〕计算个人与消费支出之间的相关系数;〔2〕配合消费支出〔Y〕对个人收入〔X〕的直线回归方程。解:〔1〕nxyxy=0.9872x)2ny2nx2((y)2〔2〕配合回归方程y=a+bxnxyxy5271123853451.1688bx2(2=530113(385)2nx)aybx=3451.168838520.997655word文档精品文档分享回归方程为:y=-20.9976+1.1688x、从某行业随机抽取6家企业进展调查,所得有关数据如下:企业编号产品销售额〔万元〕销售利润〔万元〕150122154325643785481566525要求:〔1〕拟合销售利润〔y〕对产品销售额〔x〕的回归直线,并点评回归系数的实际意义。〔2〕当销售额为100万元时,销售利润为多少?解:〔1〕配合回归方程y=a+bxnxyxy63451240700.3950bx2(2=11248(240)2nx)6aybx=700.39502404.134366回归方程为:y=-4.1343+0.3950x回归系数b=0.3950,表示产品销售额每增加1万元,销售利润平均增加0.3950万元。〔2〕当销售额为100万元时,即x=100,代入回归方程:y=-4.1343+0 .3950×100=35.37〔万元〕典型计算题二26、某市基期社会商品零售额为8600万元,报告期比基期增加 4290万元,零售物word文档精品文档分享价指数上涨11.5%。试推算该市社会商品零售总额变动中由于零售物价变动和零售量变动的word文档精品文档分享影响程度和影响绝对额。解:根据条件,可得知:word文档精品文档分享基期零售额q0p08600万元报告期零售额q1p18600429012890万元零售物价指数q1p1100%11.5%111.5%q1p0零售额指数q1p112890149.9%q0p08600根据指数体系有零售量指数零售额指数149.9%134.4%零售物价指数111.5%根据零售物价指数q1p1111.5%,有q1p0q1p0q1p111561万元111.5%或根据q1p0134.4%q0p0q1p0q0p0134.4%8600134.4%11561零售物价和零售量变动对零售额变动的相对影响为q1p1q1p0q1p1q0p0q0p0q1p0149.9%111.5%134.4%零售物价和零售量变动对零售额变动的影响绝对值为q1p1q0p0q1p0q0p0q1p11289086001289011561115618600429029611329万元q1p0word文档精品文档分享计算结果点评,该市社会商品零售额报告期比基期增长49.9%,是由销售量增加34.4%,物价上涨11.5%两因素共同作用所造成的;而零售额增长4290万元,是销售量增长增加2961万元,物价上涨增加1329万元的结果.点评:做此题应从零售额、零售价、销售量三个指数之间的数量关系入手,根据给定的条件,word文档精品文档分享利用指数体系之间的关系进展指数间的推算,并从相对数和绝对数两方面进展因素分析。word文档精品文档分享27、根据以下资料计算:〔1〕产量指数及产量变化对总产值的影响;〔2〕价格指数及价格变化对总产值的影响。产量单位价格〔元〕产品名称计量单位基期报告期基期报告期甲2000240045件120500450100乙台解:设产量为 q,价格为p;0和1分别表示基期和报告期。产量指数kqqp%qp由于产量增而总增加的产值qqqq元()即:报告期产量比基期增长20%,使总产值增加11600元。价格指数kpqp.%qp由于价格下降而减少的产值qpqp(元)即:报告期价格比基期下降5.17%,使总产值减少3600(元)。28、某企业生产甲、乙、丙三处产品,1984年产品产量分别比1983年增长2%、5%、8%。1983年甲、乙、丙产品产值分别为5000元,1200元,24000元,问1984年三种产品产量比1983年增加多少?由于产量增加而增加的产值是多少?解:word文档精品文档分享三种产品的产量总指数kqkq0p0q0p0102%5000105%12000108%240005000120002400043620106.39%41000即1984年总产量比1983年增长6.39%由于产量增长而增加的产值kq0p0q0p043620410002620(元)(注:常的错误是kq2%50005%120008%2400050001200024000)29、某商店销售的三种商品1984年价格分别是1983年的106%、94%、110%。三种商1984年销售额分别是80000元,25000元,14000元。问三种商品物价总指数是多少?价格变化对销售额影响如何?解:价格总指数:qpkp%%%qpk.%由于价格变动增加的销售额qpqp元k30、某商店某商品销售量和销售价格资料如下表基期报告期15001800销售量〔件〕230210销售价格〔元/件〕试从相对数和绝对数两方面分析销售量及价格变动对销售额的影响word文档精品文档分享解:word文档精品文档分享qp.%销售额指数=pq销售额增加q1p1q0p037800034500033000元销售量指数q11800q0120%1500由于销售量增加而增加的销售额q1 q0p01800 1500 23069000(元)销售价格指数p121091.3%p0230由于价格下降而减少的销售额:(p1-p0)q1=(210-230)×1800=-36000〔元〕以上各因素间的关系:q1p1q1p1q0p0q0p0109.57%120%91.3%q1p0q0p0q1q0p0p1p0q133000=69000-36000这点评销售额之所以增长9.57%,是由于销售量增长 20%和销售价格降低8.7%两因素的共同影响;销售额的绝对量增加 33000元,是由于销售量增加使销售额增加69000元和销售价格降低使销售额减少36000元两因素的共同影响.点评:这是简单现象总体总量指标的二因素分析,在相对量分析时可以不参加同度量因素,但在绝对量分析时一定要参加同度量因素。31、某厂1990年的产量比 1989年增长13.6%,总本钱增加 12.9%,问该厂1990年产品单位本钱的变动情况如何:解:单位本钱指数=总本钱指数÷产量指数word文档精品文档分享=(1+12.9)÷(1+13.6%)=99.38%word文档精品文档分享即1990年产品单位本钱比 1989年下降0.62%点评:此题要求利用指数体系之间的关系进展互相推算,要正确理解指数的涵义。常见的错误是12.9%÷13.6%=94.85%.32、价格降低后用同样多的人民币可多购商品15%,试计算物价指数.解:物价指数=购物额指数÷购物量指数=100%÷(1+15%)=86.96%:物价指数为86.96%.点评:此题要求利用指数体系之间的关系进展互相推算,要正确理解指数的涵义。常见的错误是100%÷15%=66.67%.33、某工厂基期和报告期的单位本钱和产量资料如下:单位基期报告期单位本钱产量单位本钱产量5052045600甲产品〔件〕120200110500乙产品〔公斤〕试从相对数和绝对数两方面对总本钱的变动进展因素分析。解:qp总本钱指数=%qp总本钱增加qpqp元产量指数=qp%qp由于产量增加而增加的总本钱:word文档精品文档分享qpqp元word文档精品文档分享单位本钱指数=qp%qpword文档精品文档分享由于单位本钱降低而节约的总本钱:qpqp元qpqpqpqpqpqp164%=180%×91%qpqpqpqpqpqp32000=40000-8000这点评总本钱之所以增长64%,是由于产量增加 80%和单位本钱降低 9%两因素共同影响的结果;产量增加使总本钱增加40000元,单位本钱降低使总本钱节约8000元,两因素共同作用的结果使总本钱绝对额增加32000元。34、某工厂生产三种不同产品,1985年产品总本钱为12.9万元,比1984年多0.9万元,三种产品单位本钱平均比1984年降低3%,试确定:(1)生产总本钱指数,(2)产品物量指数(3)由于本钱降低而节约的生产本钱绝对数.解:(1)总本钱指数=qp..%qp..(2)产品物量(产量)指数=生产总本钱指数÷单位本钱指数qpqpqp.%%.%即:pqpqpq产品本钱指数=qp。qp%那么:qp..万元%word文档精品文档分享由于本钱降低而节约的生产本钱绝对数额word文档精品文档分享qpqp...万元35、〔不在复习X围之内〕某公司所属甲、乙两企业生产某产品,其基期和报告期的单位产品本钱和产量资料如下表:基期报告期单位本钱产量单位本钱产量5052045600甲5520052500乙〔1〕从相对数和绝对数两方面分析甲、乙两企业单位本钱和产量构造的变动对总平均本钱的影响;〔2〕由于各企业单位本钱变动和产量构造变动而引起的总本钱变动的绝对额。解:xf〔1〕设单位本钱 x,产量f,那么平均本钱xfxfxf可变以构成指数 =ff...%总平均本钱增减绝对数额:xfxf...元ff其中:①各企业本钱水平变动的影响:xfxf固定构造指数=ffword文档精品文档分享...%word文档精品文档分享各企业本钱水平变动影响的绝对额xfxf...元ff②各企业产量构造变动的影响xfxf构造影响指数=ff...%由于产量构造变化引起平均本钱变化的绝对额:xfxf...元ff即:93.76%=92.17%×101.72%-3.21=-4.09+0.88总平均本钱之所以降低6.24%,是由于各厂本钱降低7.83%和各厂产量构成发生变化使平均word文档精品文档分享本钱上升1.72%两因素的共同影响;总平均本钱绝对数之所以降低3.21元,是由于各厂本钱降word文档精品文档分享低使总平均本钱降低4.09元和各厂产量构成发生变化使总平均本钱增加0.88元两因素的共word文档精品文档分享同影响.word文档精品文档分享(2)总平均本钱变动影响的总本钱:xfxf.元fff各企业单位本钱变动影响的总本钱:xfxf.元fff各企业产量构造变动影响的总本钱:xfxf.元fffword文档精品文档分享:-3531=-4499+968各企业单位本钱下降节约总本钱4499元,产量构造变化增加总本钱968元,使得总本钱净节3531元。36、〔不在复习X围之内〕某企业基期和报告期的资料如下:试从相对数和绝对数两方面分析企业总平均劳动生产率变动受各个工人组劳动生产率变动和工人组人数构造变动的影.产量(万吨)工人人数(人)工人分组基期报告期基期报告期26.066.06501500技术工人22.825.29501000普通工人:xf设各组工人劳动生产率为x,各组工人数为 f,那么产量为 x.f,平均劳动生产率xfxfxf可变构成指数=ff.%=119.61%总平均劳动生产率增减的绝对量:xfxf..(吨/人)ff其中:(1)各组工人劳动生产率变动影响:xfxf固定构造指数=ffword文档精品文档分享..%word文档精品文档分享(注:先用xff计算出基期劳动生产率x0,再套用公式)劳动生产率增减的绝对额额xfxf.吨/人=f.f各组工人人数构成变化影响xfxf构造影响指数=.%ff人数构成变化对平均劳动生产率影响的绝对额xfxf=吨/人ff:119.61%=108.57%×110.16%59.8=28.8+31总平均劳动生产率增长19.61%,是由于各组劳动生产率增长8.57%和各组人数构造变动使劳动生产率增长10.16%两因素的共同影响;总平均劳动生产率人均增长59.8吨,是由于各组劳动生产率增长使总平均劳动生产率增长28.8吨和人数构成变化使总平均劳动生产率增长31吨两因素的共同影响.产量或产值xf〕.点评:劳动生产率=,故产量是劳动生产率和工人人数的乘积〔工人人数x,工人人数为f,这样得出的xxf最常见的错误是设产量为并不是平均劳动生产f率.、某企业三种产品的资料如下:word文档精品文档分享产品名称总生产本钱〔万元〕基期与报告期word文档精品文档分享基期报告期相比单位本钱提高%甲151810乙20205丙161603试计算〔1〕总本钱指数及总本钱增加绝对值〔2〕三种产品的单位本钱总指数及由于单位本钱变动而增加的总本钱。q1p156109.8%解:〔1〕总本钱指数==q0p051增加绝对额q1p1-q0p0=56-51=5〔万元〕〔2〕单位本钱总指数=p1q118221656105.96%1=221652.8518p1q11.101.051.03k由于单位本钱变动而增加的总本钱p1q1-1p1q1=56-52.85=3.15〔万元〕k38、某化肥厂1990年化肥产量为2万吨,假设“八五〞期间每年平均增长8%,以后每年平均增长15%,问2000年化肥产量将到达多少万吨?如果规定2000年产量比1990年翻两番,问每年需要增长多少才能到达预定产量?解:第一问:a0=2万吨“八五〞期间〔1991—1995〕x1=108%后五年x2=115%n=n1+n2=10年那么2000年产量an=a0x15x2521.0851.152=5.91万吨word文档精品文档分享第二问:因为2000年产量比 1990年翻两番,即2000年产量是 1990年的4倍,所以,2000word文档精品文档分享年产量an=2 4=8万吨 n=10年an18那么平均每年增长速度为:x11=1.15-1=0.15a02即:每年需要增长15%才能到达预定的产量。39、1985年上半年某商店各月初商品库存资料如下:一月二月三月四月五月六月七月42343532363338试确定上半年商品平均库存额。〔单位:千元〕解:这是连续登记资料且间隔相等的时点数列。登记资料的时点在各月初,将七月初的库存视为6月底库存。用首末折半法计算。aanaan=30千元40、某工厂某年人数资料如下:时间上年末2月末5月初9月末12月末职工人数253250260258256试计算该年月平均人数。解:这是连续登记资料且间隔不等的时点数列。其序时平均数的计算要以间隔为权数加权平均,将上半年末资料视为本年1月初。a1a2f1a2a3f2an1anfn1平均人数a222f2532502502602602582582562222523212257(人〕word文档精品文档分享注意:在既有期初又有期末登记资料的时点数列中,间隔的计算一定要仔细,以免发生word文档精品文档分享错误。41、某企业1991年四月份几次工人变动登记如下:4月1日 4月11日 4月16日 5月1日1210124013001270试计算企业平均工人数。解:这是资料变化时登记的时点数列,计算序时平均数时以变量值的持续时间为权数加权平均。afa人f注意:5月1日1270人的资料不能计算在四月份之内,这个数字仅证明从4月16日起1300人一直持续到4月30日。42、某百货公司月商品销售额及月初库存资料如下:4月5月6月7月150200240276销售额45554575库存额计算第二季度平均每月商品流转次数和第二季度商品流转次数。解:第二季度平均每月流转转次数:aanc11ba1a2a3...an22115020024033.6945457555322word文档精品文档分享第二季度商品周转次数:word文档精品文档分享aaanana.次〔或3.69×3=11.07〕销售额即ca点评:商品流转次数=。这是对相对指标时间数列计算序时平均数。库存额b该相对指标的分子数列是时期数列,分母数列是时点数列,应“分子、分母分别求序时平均数,再将这两个序时平均数比照〞。43、某地区财政局某年各季度税收方案完成程度资料如下表,计算该年税收方案平均完成程度.一季度二季度三季度四季度430448480500税收方案125150150120方案完成程度(%)解:税收方案完成程度=税收实际即ca,该税收方案,这是对相对数时间数列求序时平均数b相对数的分子、分母都是时期数列。税收方案平均完成程度abccbb%%%%%.44、某工厂第一季度工人数和工业总产值资料如下表,试计算该厂第一季度的平均月劳动生产率。word文档精品文档分享一月二月三月四月word文档精品文档分享250272271323总产值〔万元〕2050195021501850月初工人数〔人〕总产值a解:劳动生产率=即c工人数b这是对静态平均数时间数列计算序时平均数,其方法和相对数时间数列计算序时平均数一样。a第一季度月平均劳动生产率cb.万元/人/人45、某企业上半年各月平均人数资料如下表:一月二月三月四月五月六月平均人数240242238250252246计算上半年总平均人数。解:这是对动态平均数时间数列计算序时平均数。由于动态平均数时间数列的指标值具有可加性,因而其序时平均数的计算方法与时期数列序时平均数的计算方法一样a上半年总平均人数an240242238250252246=6245人46、某企业产品产量1984年是1983年的105%,1985年是1984年的103%,1986年1985年的106%,问1986年产量是1983年的多少?解:这是各期环比开展速度计算相应期定基开展速度的例子,利用两种速度之间的word文档精品文档分享关系推算。word文档精品文档分享105%×103%×106%=114.64%word文档精品文档分享1986年产量是1983年的114.64%word文档精品文档分享47、某企业某产品本钱1990年比1989年降低2%,1991年比1990年降低3%,1992年比word文档精品文档分享1991年降低1.6%,问产品单位本钱 1992年比1989年降低多少?word文档精品文档分享:1990年是1989年的98%(100%-2%),1991是1990年97%(100%-3%),1992年是1991年的98.4%(100%-1.6%).1992年单位本钱是1989年:98%×97%×98.4%=93.54%,比1989年降低6.46%点评:首先将增长速度复原成开展速度,利用积商关系计算 ,然后再复原成增长速度.最常见的错误是:2%×3%×1.6%=9.6%48、某工业企业总产值 1993年比1990年增长25%,1994年比1990年增长39%,问总产1994年比1993年增长多少?解:1994年比1993年增长:△x=(1+39%)÷(1+25%)-1=11.2%点评:首先将增长速度复原成开展速度,利用积商关系计算,然后再复原成增长速度.常见的错误是39%÷25%=156%.49、根据以下资料计算某商场第一季度售货员的月人均销售额。月份一二三四商品销售额〔万元〕90124143156月初售货员人数〔人〕58606466a解:cba90121443〔万元〕a119n3word文档精品文档分享111586064166b2b1b2b32bn2262〔人〕n141a119c1.92〔万元/人〕b6250、某地区1995年底人口数为2000万人,假定以后每年以9‰的增长率增长;又假定该地区1995年粮食产量为120亿斤,要求到2000年平均每人粮食达到800斤,试计算2000年粮食产量应该到达多少?粮食产量每年平均增长速度如何?解:2000该地区人口数=na0 (x)2000 (1.009)2091.6〔万人〕〔5分〕2000年应该到达的粮食产量=20916×800=167.33〔亿斤〕xnan15167.33a016.9%120典型计算题三1.某班40名学生某课程成绩分别为:658786838788747172627382975581457976957977601006475717487889562528581777672647085按学校规定:60分以下为不及格,60─70分为及格,70─80分为中,80─90分为良,90─100分为优。要求:将学生的考核成绩分组并编制一X考核成绩次数分配表;2〕指出分组标志及类型及采用的分组方法;3〕计算本班学生的考核平均成绩并分析本班学生考核情况。参考答案:〔1〕word文档精品文档分享〔2〕分组标志为"成绩成绩人数频率(%)",其类型为"数量标志";分组方法为:变量分组中的开60分以下37.5放组距式分组,组限表示方法是重叠组限;60-70615(3)平均成绩:70-801537.5平均成绩=80-901230全班总成绩,即全班总人数90-100410合计40100xxf308077f40〔分〕答题点评:先计算出组距式分组数列的组中值。此题掌握各组平均成绩和对应的学生数资料〔频数〕,掌握被平均标志值x及频数、频率、用加权平均数计算。4〕本班学生的考核成绩的分布呈两头小,中间大的"正态分布"的形态,平均成绩为77分,说明大多数学生对本课程知识的掌握到达了课程学习的要求。2.〔1〕某企业2002年产值方案是 2001年的105%,2002年实际产值是 2001的116%,问2002年产值方案完成程度是多少?2〕某企业2021年产值方案比2021年增长5%,实际增长16%,问2021年产值方案完成程度是多少?参考答案:〔1〕方案完成程度实际相对数116%110%。即2002年方案完成程度为110%,超额完成计方案相对数105%划10%。答题点评:此题中的方案任务和实际完XX是“含基数〞百分数,所以可以直接代入根本公式计算。〔2〕方案完成程度116%110%15%答题点评:这是“不含基数〞的相对数计算方案完成程度,应先将“不含基数〞的相对数复原成“含基数〞的相对数,才能进展计算。3.某地区销售某种商品的价格和销售量资料如下:商品规格销售价格〔元〕各组商品销售量占总销售量的比重〔%〕甲20-3020乙30-4050丙40-5030根据资料计算三种规格商品的平均销售价格。参考答案:商品规销售价格组中值比重〔%〕xf/f〔x〕格〔元〕f/f甲20-3025205.0乙30-40355017.5丙40-50453013.5合计----10036.0xxf36(元)fword文档精品文档分享答题点评:第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格。第二,所给资料是组距数列,因此需计算出组中值。采用加权算术平均数计算平均价格。第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算。4.某工业公司12个企业方案完成程度分组资料如下:按产值方案完成分组〔%〕组中值〔%〕企业数实际产值(万元)90-1009521200100-110105712800110-12011532000试计算该公司平均方案完成程度指标。参考答案:xm1140134402300105.5%m1140134402300x95%105%115%答题点评:这是一个相对数计算平均数的问题,首先涉及权数的选择问题。我们假设以企业数为权数,那么平均方案完成程度 :xf95%2105%7115%3x12105.83%f以上算法显然不符合方案完成程度的计算公式,因为方案完成程度=实际完成数,即影响方案完成程方案任务数度的直接因素应是企业的实际完成数和企业的方案任务数,以实际完成数或方案任务数作权数是比拟适宜的;其次涉及平均方法的选择问题,本例掌握实际完成数,即掌握所要平均的变量的分子资料,故用加权调和平均数法计算。word文档精品文档分享在选择权数时必须考虑两点:一是它是标志值的直接承当者;志总量。5.有两企业工人日产量资料如下:平均日产量(件)标准差(件)二是它与标志值相乘具有意义,能构成标word文档精品文档分享甲企业173word文档精品文档分享乙企业26.13.3word文档精品文档分享试比拟哪个企业的工人平均日产量更具代表性?参考答案:甲3乙3.3v甲1717.6%v乙12.6%x甲x乙26.1可见,乙企业的平均日产量更具有代表性。答题点评:这显然是两组水平不同的现象总体,不能直接用标准差的大小分析平均水平的代表性,必须计算标准差系数。6.采用简单重复抽样的方法,抽取一批产品中的200件作为样本,其中合格品为195件。要求:⑴计算样本的抽样平均误差。⑵以95.45%的概率保证程度对该产品的合格率进展区间估计(z=2)。参考答案:n=200件p195100%=97.5%200抽样成数平均误差 :word文档精品文档分享pp(1p)97.5%(197.5%)0.9750.0251.1%n2000.000122200word文档精品文档分享抽样极限误差:p=p=2×1.1%=2.2%,那么合格率的X围:P=p±Δp=97.5%±2.2%95.3%≤P≤99.7%样本的抽样平均误差为1.1%,在95.45%的概率保证程度下 ,该批产品合格率在95.3%至99.7%之间。7.在4000件成品中按不重复方法抽取200件进展检查,结果有废品8件,当概率为0.9545(z=2)时,试估计这批成品废品量的X围。参考答案:N=4000,n=200,z=2.样本成数P==0.04,那么样本平均误差:word文档精品文档分享pp1pn0.040.96200n110.0125N2004000word文档精品文档分享允许误差p=p=2×0.0125=0.027废品率X围 p=p±Δp=0.04±0.027即1.3%-6.7%废品量=全部成品产量×废品率那么全部成品废品量X围为:4000×1.3%-4000×6.7%即52-268(件)8.在某乡 2万亩水稻中按重复抽样方法抽取400亩,得知平均亩产量为 609斤,样本标准差为 80斤.要求以95.45%(z=2)的概率保证程度估计该乡水稻的平均亩产量和总产量的区间X围。参考答案:此题是变量总体平均数抽样N=40000,n=400,x=609斤,б=80,z=2样本平均误差804xn400允许误差x=x=2×4=8平均亩产X围x=x±Δx609-8≤x≤609+8即601—617(斤)总产量X围:601×20000-617×20000即1202—1234〔万斤〕.某企业上半年产品产量与单位本钱资料如下:月份产量〔千件〕单位本钱〔元〕127323723471437354696568word文档精品文档分享要求:⑴计算相关系数,说明两个变量相关的密切程度。word文档精品文档分享⑵配合回归方程,指出产量每增加1000件时单位本钱平均变动多少?⑶假定产量为 6000件时,单位本钱为多少元?参考答案:设产量为自变量〔x〕,单位本钱为因变量〔y〕列表计算如下:月份产量〔千件〕单位本钱〔元〕x2y2xynxy127345329146237295184216347116504128443739532921954691647612766568254624340合计2142679302681481⑴计算相关系数nxyxynx2(x)2ny2(y)26 1481 21 4260.9091(6 79 212) 6 3026842620.9091说明产量和单位本钱之间存在高度负相关.⑵配合加归方程yc=a+bxxyxyn1481214266bx2n792126x2101.8255aybx4261.82216677.37回归方程为yc77.371.82x即产量每增加1000件时,单位本钱平均下降1.82元。⑶当产量为6000件时,即x=6,代入回归方程:yc=77.37-1.82×6=66.45(元)即产量为6000件时,单位本钱为66.45元。10.某工厂基期和报告期的单位本钱和产量资料如下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《职业基本范畴》课件
- 《拐弯儿处的回头》课件
- 2025年中考英语一轮教材复习 八年级(上) Unit 3-1
- 《怪诞行为经济学》课件
- 金泰酒店筹建项目管理制度大全
- 革命烈士纪念塔保护改造项目建设可行性研究报告
- 水煤浆生产线可行性研究报告
- 诺如病毒疫情知识及防控建议培训课件
- 2015年浙江义乌中考满分作文《我长大了》2
- 《根河之恋散文》课件
- 2024架空输电线路运维管理规定
- 智能化改造的力量
- 生物-安徽省2025届高三第一次五校(颍上一中、蒙城一中、淮南一中、怀远一中、涡阳一中)联考试题和答案
- 2023年民航东北空管局人员招聘考试真题
- 老年人护理风险防控
- 云南省高中信息技术学业水平考试知识点复习
- 养老院防恐防暴应急预案
- 成绩差的家长会发言稿
- 2021大学生个人职业生涯规划书6篇
- 乡村振兴的实践探索学习通超星期末考试答案章节答案2024年
- 安全生产责任制度考题
评论
0/150
提交评论