重庆市育才成功学校2023年八年级数学第二学期期末学业质量监测模拟试题含解析_第1页
重庆市育才成功学校2023年八年级数学第二学期期末学业质量监测模拟试题含解析_第2页
重庆市育才成功学校2023年八年级数学第二学期期末学业质量监测模拟试题含解析_第3页
重庆市育才成功学校2023年八年级数学第二学期期末学业质量监测模拟试题含解析_第4页
重庆市育才成功学校2023年八年级数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在数学活动课上,同学们判断一个四边形门框是否为矩形.下面是某学习小组4位同学拟定的方案,其中正确的是()A.测量对角线是否平分 B.测量两组对边是否分别相等C.测量其中三个角是否是直角 D.测量对角线是否相等2.若代数式有意义,则一次函数的图象可能是A. B. C. D.3.菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A.52 B.48 C.40 D.204.下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1 B.2 C.3 D.45.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A. B. C.12 D.246.下面与是同类二次根式的是()A. B. C. D.7.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.8.己知一个多边形的内角和是360°,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形9.如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为()A.πcm2 B.4cm2 C.cm2 D.cm210.如图,在正方形中,点是的中点,点是的中点,与相交于点,设.得到以下结论:①;②;③则上述结论正确的是()A.①② B.①③C.②③ D.①②③11.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO12.判断下列三条线段a,b,c组成的三角形不是直角三角形的是()A.a=4,b=5,c=3 B.a=7,b=25,c=24C.a=40,b=50,c=60 D.a=5,b=12,c=13二、填空题(每题4分,共24分)13.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为____________.14.若分式方程有增根,则a的值是__________________.15.如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差S甲2、S乙2的大小:S甲2____S乙2(填“>”、“<”或“=”)16.有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是.17.如图,在中,角是边上的一点,作垂直,垂直,垂足分别为,则的最小值是______.18.在矩形ABCD中,AB=6cm,BC=8cm,则点A到对角线BD的距离为_____.三、解答题(共78分)19.(8分)计算:(1);(2)sin30°+cos30°•tan60°.20.(8分)用适当的方法解下列方程:(1)5x2=4x(2)(x+1)(3x﹣1)=021.(8分)如图,在四边形ABCD中,,,,点P自点A向D以的速度运动,到D点即停止点Q自点C向B以的速度运动,到B点即停止,点P,Q同时出发,设运动时间为.用含t的代数式表示:______;______;______.(2)当t为何值时,四边形APQB是平行四边形?22.(10分)(1)计算:(2)解方程:-1=23.(10分)在平面直角坐标系中,直线与轴、轴分别相交于A、B两点,求AB的长及△OAB的面积.24.(10分)如图,已知是线段的中点,,且,试说明的理由.25.(12分)(1)已知x=+1,y=-1,求x2+y2的值.(2)解一元二次方程:3x2+2x﹣2=1.26.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.

参考答案一、选择题(每题4分,共48分)1、C【解析】分析:根据矩形的判定方法逐项分析即可.详解:A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;C、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;D、根据对角线相等不能得出四边形是矩形,故本选项错误;故选C.点睛:本题考查了矩形的判定方法的实际应用,熟练掌握矩形的判定方法是解答本题的关键.矩形的判定方法有:①有一个角的直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形.2、A【解析】

根据二次根式有意义的条件和分式有意义的条件得到k-1>0,解k>1,则1-k<0,然后根据一次函数与系数的关系可判断一次函数的位置,从而可对各选项进行判断.【详解】解:根据题意得k-1>0,解k>1,

因为k-1>0,1+k>0,

所以一次函数图象在一、二、三象限.

故选:A.【点睛】本题考查一次函数与系数的关系:对于y=kx+b,当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.3、A【解析】

由勾股定理可得AB的长,继而得到菱形ABCD的周长.【详解】因为菱形ABCD中,AC=10,BD=24,所以OB=12,OA=5.在直角三角形ABO中,AB=,所以菱形ABCD的周长=4AB=52,故答案为A.【点睛】本题考查勾股定理和菱形的性质,解题的关键是掌握勾股定理和菱形的性质.4、C【解析】

首先写出各个命题的逆命题,然后进行判断即可.【详解】①直角三角形两锐角互余逆命题是如果三角形中有两个角互余,那么这个三角形是直角三角形,是真命题;②全等三角形的对应角相等逆命题是对应角相等的两个三角形全等,是假命题;③两直线平行,同位角相等逆命题是同位角相等,两直线平行,是真命题:④对角线互相平分的四边形是平行四边形逆命题是如果四边形是平行四边形,那么它的对角线互相平分,是真命题.故选C.【点睛】本题考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.5、A【解析】

解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB•DH=AC•BD,即5DH=×8×6,解得DH=.故选A.【点睛】本题考查菱形的性质.6、B【解析】

根据同类二次根式的定义,先将各选项化为最简二次根式,再看被开方数是否相同即可.【详解】解:A、与被开方数不同,不是同类二次根式;B、与被开方数相同,是同类二次根式;C、=3与被开方数不同,不是同类二次根式;D、与被开方数不同,不是同类二次根式.【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同.这样的二次根式叫做同类二次根式.7、B【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、A【解析】

根据多边形的内角和公式即可求解.【详解】设边数为n,则(n-2)×180°=360°,解得n=4故选A.【点睛】此题主要考查多边形的内角和,解题的关键是熟知公式的运用.9、B【解析】

根据平移后阴影部分的面积恰好是长1cm,宽为1cm的矩形,再根据矩形的面积公式即可得出结论.【详解】解:∵平移后阴影部分的面积恰好是长为1cm,宽为1cm的矩形,∴S阴影=1×1=4cm1.故选B.【点睛】本题考查的是图形平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.10、D【解析】

由正方形的性质和全等三角形的判定与性质,直角三角形的性质进行推理即可得出结论.【详解】解:如图,(1)所以①成立(2)如图延长交延长线于点,则:∴为直角三角形斜边上的中线,是斜边的一半,即所以②成立(3)∵∴∵∴所以③成立故选:D【点睛】本题考查的正方形的性质,直角三角形的性质以及全等三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.11、D【解析】A选项:∵AD∥BC,

∴∠ADB=∠CBD,

在△BOC和△DOA中,∴△BOC≌△DOA(AAS),

∴BO=DO,

∴四边形ABCD是平行四边形,正确,故本选项错误;

B选项:∵∠ABC=∠ADC,AD∥BC,

∴∠ADC+∠DCB=180°,

∴∠ABC+∠BCD=180°,

∴AB∥DC,

∴四边形ABCD是平行四边形,正确,故本选项错误;

C选项:∵AB=CD,AD=BC,

∴四边形ABCD是平行四边形,正确,故本选项错误;

D选项:由∠ABD=∠ADB,∠BAO=∠DCO,

无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选D.【点睛】平行四边形的判定有:①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形.12、C【解析】

根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵32+42=52,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;B、∵72+242=252,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;C、∵402+502≠602,∴由线段a,b,c组成的三角形不是直角三角形,故本选项正确;D、∵52+122=132,∴由线段a,b,c组成的三角形不是直角三角形,故本选项错误.故选:C.【点睛】本题考查的是勾股定理及勾股定理的逆定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.二、填空题(每题4分,共24分)13、36°【解析】∵多边形ABCDE是正五边形,∴∠BAE==108°,∴∠1=∠2=(180°-∠BAE),即2∠1=180°-108°,∴∠1=36°.14、1【解析】

增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入整式方程算出a的值即可.【详解】方程两边同时乘以x﹣3得:1+x﹣3=a﹣x.∵方程有增根,∴x﹣3=0,解得:x=3,∴1+3﹣3=a﹣3,解得:a=1.故答案为:1.【点睛】本题考查了分式方程的增根,先根据增根的定义得出x的值是解答此题的关键.15、<【解析】

利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.【详解】解:由折线统计图得乙运动员的成绩波动较大,所以S甲2<S乙2故选<【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.16、34【解析】试题解析:解:设这7个数的中位数是x,根据题意可得:,解方程可得:x=34.考点:中位数、平均数点评:本题主要考查了平均数和中位数.把一组数据按照从小到大的顺序或从大到小的顺序排列,最中间的一个或两个数的平均数叫做这组数据的中位数.17、【解析】

根据已知条件得出四边形AEPF为矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.【详解】连接AP,四边形AFPE是矩形,要使EF最小,只要AP最小即可,过点A作于P,此时AP最小,在直角三角形中,由勾股定理得:BC=5,由三角形面积公式得:,即,故答案为:.【点睛】本题是矩形的判定与性质和直角三角形结合考查的题型,找出与EF相等的线段,结合垂线段最短的性质是解题的关键.18、4.8cm【解析】

作AE⊥BD于E,由矩形的性质和勾股定理求出BD,由△ABD的面积的计算方法求出AE的长即可.【详解】如图所示:作AE⊥BD于E,

∵四边形ABCD是矩形,

∴∠BAD=90°,AD=BC=8cm,

∴BD==10cm,

∵△ABD的面积=BD•AE=AB•AD,

∴AE===4.8cm,

即点A到对角线BD的距离为4.8cm,

故答案为:4.8cm.【点睛】考查了矩形的性质、勾股定理、三角形面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.三、解答题(共78分)19、(1);(2)2【解析】试题分析:(1)根据二次根式的乘除法法则计算即可;(2)根据特殊角的锐角三角函数值计算即可.解:(1)原式;(2)原式.考点:实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.20、(1)x1=0,x2=;(2)x1=﹣1,x2=.【解析】

(1)先移项,然后利用因式分解法解方程;

(2)利用因式分解法解方程.【详解】解:(1)由原方程,得x(5x﹣4)=0,则x=0或5x﹣4=0,解得x1=0,x2=;(2)(x+1)(3x﹣1)=0,x+1=0或3x﹣1=0,x1=﹣1,x2=.【点睛】本题考查了因式分解法解一元二次方程.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学转化思想).21、(1)t;;;(2)5.【解析】

(1)直接利用P,Q点的运动速度和运动方法进而表示出各部分的长;(2)利用平行四边形的判定方法得出t的值.【详解】由题意可得:,,,故答案为t,,;,当时,四边形APQB是平行四边形,,解得:.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题关键.22、(1)3+2;(2)原方程无解【解析】

(1)利用乘法公式展开,然后合并即可;(2)先去分母把方程化为(x-2)2-(x+2)(x-2)=16,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式=5+5-3-2=3+2;(2)去分母得(x-2)2-(x+2)(x-2)=16,解得x=-2,检验:当x=-2时,(x+2)(x-2)=0,则x=-2为原方程的增根,所以原方程无解.【点睛】本题考查了二次根式的混合运算及分式方程的解法:先进行二次根式的乘法运算,再合并同类二次根式即可.解分式方程最关键的是把分式方程化为整式方程.23、,1【解析】

根据两点距离公式、三角形的面积公式求解即可.【详解】解:令y=0,解得令x=0,解得∴A、B两点坐标为(3,0)、(0,6)∴∴故答案为:,1.【点睛】本题考查了直线解析式的几何问题,掌握两点距离公式、三角形的面积公式是解题的关键.24、见解析【解析】

根据中点定义求出AC=CB,两直线平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论